Mathematische Annalen

, Volume 204, Issue 4, pp 263–270 | Cite as

L-series, modular imbeddings, and signatures

  • W. F. Hammond
  • F. Hirzebruch


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Freitag, E.: Lokale und globale Invarianten der Hilbertschen Modulgruppe. Invent. Math.17, 106–134 (1972).Google Scholar
  2. 2.
    Hammond, W. F.: The modular groups of Hilbert and Siegel. Amer. J. Math.88, 497–516 (1966).Google Scholar
  3. 3.
    Hammond, W. F.: The Hilbert modular surface of a real quadratic field. Math. Ann.200, 25–45 (1973).Google Scholar
  4. 4.
    Hirzebruch, F.: The signature theorem: reminiscences and recreation. Prospects in Mathematics, Ann. Math. Stud., no. 70, Princeton, 1971.Google Scholar
  5. 5.
    Hirzebruch, F.: The Hilbert modular group, resolution of the singularities at the cusps and related problems. Séminaire Bourbaki, exp. 396 (1971).Google Scholar
  6. 6.
    Hirzebruch, F.: The Hilbert modular group and some algebraic surfaces, International Symposium in Number Theory, Moscow, 1971 (to appear).Google Scholar
  7. 7.
    Hirzebruch, F.: Hilbert modular surfaces. IMU-lectures, Tokyo, 1972 (to appear in L'Enseignement Mathématique).Google Scholar
  8. 8.
    Hirzebruch, F., Zagier, D.: Class numbers, continued fractions and the Hilbert modular group (in preparation).Google Scholar
  9. 9.
    Meyer, C.: Die Berechnung der Klassenzahl abelscher Körper über quadratischen Zahlkörpern. Berlin 1957.Google Scholar
  10. 10.
    Meyer, C.: Über die Bildung von elementar-arithmetischen Klasseninvarianten in reell-quadratischen Zahlkörpern. Algebraische Zahlentheorie, Oberwolfach, pp. 165–215. Mannheim: Bibliogr. Institut 1966.Google Scholar
  11. 11.
    Prestel, A.: Die elliptischen Fixpunkte der Hilbertschen Modulgruppen. Math. Ann.177, 181–209 (1968).Google Scholar
  12. 12.
    Rademacher, H., Grosswald, E.: Dedekind Sums. Math. Assoc. of America, 1972.Google Scholar
  13. 13.
    Shimizu, H.: On discontinuous groups operating on the product of the upper half planes. Ann. of Math.77, 33–71 (1963).Google Scholar
  14. 14.
    Siegel, C. L.: Lectures on advanced analytic number theory. Tata Inst., Bombay, 1961 (re-issued 1965).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • W. F. Hammond
    • 1
  • F. Hirzebruch
    • 2
  1. 1.Dept. of MathematicsState Univ. of N.Y. at AlbanyAlbanyUSA
  2. 2.Mathematisches InstitutUniversität BonnBonnFederal Republic of Germany

Personalised recommendations