, Volume 167, Issue 1–2, pp 19–32 | Cite as

Scale biogenesis in the green alga,Mesostigma viride

  • D. S. Domozych
  • B. Wells
  • P. J. Shaw
Original Papers


The unicellular green algal flagellate,Mesostigma viride, is characterized by an extracellular matrix of multiple layers of scales. These scales are processed within the Golgi apparatus (GA). The GA consists of 11–13 closely stacked cisternae. The cis cisternae are highly fenestrated and grow via vesicles from adjacent transition ER. Medial-trans cisternae are plate-like with swollen peripheries. The calcified basket scales are produced in the peripheries of GA cisternae, usually first observable in the medial zone of the cisternal stack. Cisternal membrane closely conforms to the precise architecture of the developing scale. Antimonate labeling reveals that a population of smooth cytoplasmic vacuoles situated near the GA contains a store of calcium, perhaps used for scale processing. Vesicles carry calcium from these vacuoles to the cisternal loci where basket scale ontogenesis is occurring. The smaller scale types are produced within the central areas of the GA. A discussion concerning membrane flow through the GA is provided.


Scales Golgi apparatus Vacuole Calcium Vesicle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Davey J (1989) Sorting out the secretory pathway. Bioessays 11: 185–187Google Scholar
  2. Domozych DS (1989a) The endomembrane system and mechanism of membrane flow in the green alga,Gloeomonas kupfferi (Volvocales, Chlorophyta) I. An ultrastructural analysis. Protoplasma 149: 95–107Google Scholar
  3. — (1989b) The endomembrane system and mechanism of membrane flow in the green alga,Gloeomonas kupfferi (Volvocales, Chlorophyta) II. A cytochemical analysis. Protoplasma 149: 108–119Google Scholar
  4. —, Wells B, Shaw PJ (1991) The basket scales of the green alga,Mesostigma viride: chemistry, immunology and ultrastructure. J Cell Sci 100: 297–407Google Scholar
  5. —, Rogers CE, Mattox KR, Stewart KD (1983) Colchicine-induced effects in the scaly green alga,Mesostigma viride: loss of microtubules and paracrystal formation. J Exp Bot 34: 1080–1088Google Scholar
  6. Grief C, Shaw PJ (1987) Assembly of cell wall glycoproteins ofChlamydomonas reinhardii: oligosaccharides are added in medial and trans Golgi compartments. Planta 171: 302–312Google Scholar
  7. Manton I (1968) Observations on the microanatomy of the type species ofPyramimonas (P. tetrahynchus Schmarda). Proc Linn Soc Lond 179: 147–152Google Scholar
  8. — (1966) Observations on scale production inPyramimonas amylifera. J Cell Sci 1: 429–438Google Scholar
  9. —, Ettl H (1965) Observations on fine structure ofMesostigma viride Lauterborn. J Linn Soc (Bot) 59: 175–184Google Scholar
  10. —, Rayns DG, Ettl H, Parke M (1965) Further observations on green flagellates with scaly flagella: the genusHeteromastix Korshikov. J Mar Biol Assoc UK 45: 241–255Google Scholar
  11. McFadden GI, Melkonian M (1986) Golgi apparatus activity and membrane flow during scale biogenesis in the green flagellateScherffelia dubia (Prasinophyceae). I. Flagellar regeneration. Protoplasma 130: 186–198Google Scholar
  12. —, Wetherbee R (1985) Flagellar regeneration and associated scale deposition inPyramimonas gelidicola (Prasinophyceae, Chlorophyta). Protoplasma 128: 31–37Google Scholar
  13. —, Presig HR, Melkonian M (1986) Golgi apparatus activity and membrane flow during scale biogenesis in the green flagellateScherffelia dubia (Prasinophyceae). II. Cell wall secretion and assembly. Protoplasma 131: 174–184Google Scholar
  14. Moestrup O, Thomsen HA (1974) An ultrastructural study of the flagellatePyramimonas orientalis with particular emphasis on Golgi apparatus activity and the flagellar apparatus. Protoplasma 81: 247–269Google Scholar
  15. —, Walne PL (1979) Studies on scale morphogenesis in the Golgi apparatus ofPyramimonas tetrarhynchus (Prasinophyceae). J Cell Sci 36: 437–459Google Scholar
  16. Moore PJ, Staehelin LA (1988) Immunogold localization of cell wallmatrix polysaccharides rhamnogalacturonan I and xyloglucan during cell expansion and cytokinesis inTrifolium pratense L.: implication for secretory pathways. Planta 174: 433–445Google Scholar
  17. —, Swords KMM, Lynch M, Staehelin LA (1991) Spatial organization of the assembly pathways of glycoproteins and complex polysaccharides in the Golgi apparatus of plants. J Cell Biol 112: 589–602Google Scholar
  18. Morré DJ (1987) The Golgi apparatus. Int Rev Cytol [Suppl] 17: 211–253Google Scholar
  19. Rogers CE, Domozych DS, Stewart KD, Mattox KR (1981) The flagellar apparatus ofMesostigma viride (Prasinophyceae): multilayered structures in a scaly green flagellate. Plant Syst Evol 138: 247–258Google Scholar
  20. Rothman JE (1981) The Golgi apparatus: two organelles in tandem. Science 214: 1212–1219Google Scholar
  21. —, Lenard J (1984) Membrane traffic in animal cells. Trends Biochem Sci 9: 176–178Google Scholar
  22. Simkiss K, Wilbur KM (1989) Biomineralization. Cell biology and mineral deposition. Academic Press, New YorkGoogle Scholar
  23. Steer MW (1988) The role of calcium in exocytosis and endocytosis in plan cells. Physiol Plant 72: 213–220Google Scholar
  24. —, Steer JM (1989) Pollen tube tip growth. New Phytol 111: 323–358Google Scholar
  25. Westbroek P, DeJong EW, Van Der Waal P, Borman AH, Vrind JPM, Kok D, De Bruijn WC, Parker SB (1984) Mechanism of calcification in the marine algaEmiliana huxleyi. Philos Trans R Soc Lond [Biol] 304: 435–444Google Scholar
  26. Wick SM, Hepler PK (1980) Localization of Ca2+-containing antimonate precipitates during mitosis. J Cell Sci 86: 500–513Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • D. S. Domozych
    • 1
  • B. Wells
    • 2
  • P. J. Shaw
    • 2
  1. 1.Department of BiologySkidmore CollegeSaratoga SpringsUSA
  2. 2.Department of Cell BiologyJohn Innes Institute for Plant Science ResearchNorwich

Personalised recommendations