Mathematische Annalen

, Volume 142, Issue 3, pp 305–310 | Cite as

A generalization of Tychonoff's fixed point theorem

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Begle, E. G.: A fixed point theorem. Ann. Math. (2)51, 544–550 (1950).Google Scholar
  2. [2]
    Bourbaki, N.: Espaces vectoriels topologiques, Chap. I, II. (Actual. Sci. et Industr. 1189.) Paris 1953.Google Scholar
  3. [3]
    Eilenberg, S., andD. Montgomery: Fixed point theorems for multi-valued transformations. Am. J. Math.68, 214–222 (1946).Google Scholar
  4. [4]
    Fan, K.: Fixed-point and minimax theorems in locally convex topological linear spaces. Proc. Nat. Acad. Sci. U. S.38, 121–126 (1952).Google Scholar
  5. [5]
    Glicksberg, I. L.: A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points. Proc. Am. Math. Soc.3, 170–174 (1952).Google Scholar
  6. [6]
    Kakutani, S.: A generalization of Brouwer's fixed-point theorem. Duke Math. J.8, 457–459 (1941).Google Scholar
  7. [7]
    Knaster, B., C. Kuratowski andS. Mazurkiewicz: Ein Beweis des Fixpunktsatzes fürn-dimensionale Simplexe. Fundamenta Math.14, 132–137 (1929).Google Scholar
  8. [8]
    Tychonoff, A.: Ein Fixpunktsatz. Math. Ann.111, 767–776 (1935).Google Scholar

Copyright information

© Springer-Verlag 1961

Authors and Affiliations

  • Ky Fan
    • 1
  1. 1.Detroit

Personalised recommendations