Archive for Mathematical Logic

, Volume 33, Issue 2, pp 121–129 | Cite as

Recursive and r.e. quotient Boolean algebras

  • John J. Thurber


We prove a converse to one of the theorems from [F], giving a description in terms of Turing complexity of sets which can be coded into recursive and r.e. quotient Boolean algebras.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A] Ash, C.J.: A construction for recursive linear orderings. J. Symb. Logic56, 673–683 (1991)Google Scholar
  2. [A-J-K] Ash, C.J., Jockusch, C.G., Knight, J.F.: Jumps of orderings. Trans. Am. Math. Soc.319, 573–599 (1990)Google Scholar
  3. [F] Feiner, L.: Hierarchies of Boolean algebras. J. Symb. Logic35, 365–374 (1974)Google Scholar
  4. [L] Love, J.: M.Sc. Thesis. Monash University, Clayton, Victoria, AustraliaGoogle Scholar
  5. [M-B] Monk, J.D., Bonnet, R. (eds.): Handbook of Boolean algebras, Vol. 1. Amsterdam: Elsevier 1989Google Scholar
  6. [R] Rogers, H.: Theory of recursive functions and effective computability. Cambridge, MA: MIT Press 1987Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • John J. Thurber
    • 1
  1. 1.Department of MathematicsUniversity of Notre DameNotre DameUSA

Personalised recommendations