Mathematische Annalen

, Volume 246, Issue 1, pp 33–39 | Cite as

Integral solution of Hilbert's seventeenth problem

  • Gilbert Stengle


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Polya, G., Szegö, G.: Problems and theorems in analysis, Vol. 2, p. 77. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  2. 2.
    Hilbert, D.: Über die Darstellung definiter Formen als Summe von Formenquadraten. Math. Ann.32, 342–350 (1888) (see also Ges. Abh., Bd.2, 154–161. Berlin: Springer 1933)Google Scholar
  3. 3.
    Artin, E.: Über die Zerlegung definiter Funktionen in Quadrate. Hamb. Abh.5, 100–115 (1927)Google Scholar
  4. 4.
    Motzkin, T.S.: The arithmetic-geometric inequality, pp. 205–224. In: Inequalities, O. Shisha (ed.) New York: Academic Press 1967Google Scholar
  5. 5.
    Robinson, R.M.: Some definite polynomials which are not sums of squares of real polynomials. In: Selected questions of algebra and logic, pp. 264–282. Moscow: Academy of Sciences USSR 1973Google Scholar
  6. 6.
    Choi, M.D.: Positive semidefinite biquadratic forms. Linear Algebra Appl.12, 95–100 (1975)Google Scholar
  7. 7.
    Choi, M.D., Lam, T.Y.: An old question of Hilbert. Proceedings of Quadratic Forms Conference, Queens University, 385–405 (1976)Google Scholar
  8. 8.
    Choi, M.D., Lam, T.Y.: Extremal positive semidefinite forms. Math. Ann.231, 1–18 (1977)Google Scholar
  9. 9.
    Reznick, B.: Extremal PSD forms with few terms. Duke Math. J.45, No. 1, 363–374 (1978)Google Scholar
  10. 10.
    Lax, A., Lax, P.: On sums of squares. Linear Algebra Appl.20, 71–75 (1978)Google Scholar
  11. 11.
    Risler, J.J.: Une caractérisation des idéaux des variétés algébriques réelles. C. R. Sci. Paris271, 1171–1173 (1970)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Gilbert Stengle
    • 1
  1. 1.Lehigh UniversityBethlehemUSA

Personalised recommendations