Advertisement

Mathematische Annalen

, Volume 237, Issue 1, pp 41–77 | Cite as

Duality and intersection theory in complex manifolds. I

  • Domingo Toledo
  • Yue Lin L. Tong
Article

Abstract

We introduce the concept of a twisting cochain and a twisted complex associated to a coherent sheaf. For sheaves of submanifolds these twisted complexes are used to construct on cochain level the Grothendieck theory of dual class and Gysin map. These explicit constructions give, for instance, a local formula for dual class of higher codimensional submanifolds. We prove a refined version of the Hirzebruch Riemann Roch using such local formulas. We also prove a theorem on when global analytic intersection classes can be computed from first order geometric data. This theory will be used to prove the Holomorphic Lefschetz formula (in Part II) and the Hirzebruch Riemann Roch for analytic coherent sheaves.

Keywords

Manifold Complex Manifold Analytic Intersection Explicit Construction Intersection Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altman, A.B., Kleiman, S.: Introduction to Grothendieck duality theory. Lecture Notes in Mathematics 146. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  2. 2.
    de Rham, G.: Variétés différentiables. Paris: Hermann 1960Google Scholar
  3. 3.
    Gabrielov, A.M., Gelfand, I.M., Losik, M.V.: Combinatorial computation of characteristics classes. Funct. Anal. Appl.9, 12–28 (1975)Google Scholar
  4. 4.
    Grothendieck, A.: Théorèmes de dualité pour les faisceaux algébrique cohérents. Séminaire Bourbaki,t. 9, 1956–1957, No. 149Google Scholar
  5. 5.
    Grothendieck, A.: Local cohomology. Lecture Notes in Mathematics 41. Berlin, Heidelberg, New York: Springer 1967Google Scholar
  6. 6.
    Grothendieck, A.: La théorie des classes de Chern. Bull. Soc. Math. France86, 137–154 (1958)Google Scholar
  7. 7.
    Hartshorne, R.: Residues and duality. Lecture Notes in Mathematics 20. Berlin, Heidelberg, New York: Springer 1966Google Scholar
  8. 8.
    King, J.: Residues and Chern classes. Proc. of Symp. in Pure Math.27, 91–97 (1975)Google Scholar
  9. 9.
    Malgrange, B.: Systèmes différentiels à coefficients constants. Séminaire Bourbaki, t. 15, 1962–1963, no. 246Google Scholar
  10. 10.
    Ramis, J.P., Ruget, G.: Complexe dualisant et théorèmes de dualité en géométrie analytique complexe. Publ. I.H.E.S.38, 77–91 (1970)Google Scholar
  11. 11.
    Serre, J.P.: Un théorème de dualité. Comm. Math. Helv.29, 9–26 (1955)Google Scholar
  12. 12.
    Toledo, D., Tong, Y.L.L.: A parametrix for\(\bar \partial\) and Riemann Roch in Čech theory. Topology,15, 273–301 (1976)Google Scholar
  13. 13.
    Toledo, D., Tong, Y.L.L.: The holomorphic Lefschetz formula. Bull. A.M.S.81, 1133–1135 (1975)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Domingo Toledo
    • 1
    • 2
  • Yue Lin L. Tong
    • 1
    • 2
  1. 1.Columbia UniversityUSA
  2. 2.Purdue UniversityUSA

Personalised recommendations