Mathematische Annalen

, Volume 249, Issue 2, pp 107–110

A note on link complements and arithmetic groups

  • Joachim Schwermer
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borel, A.: Cohomology of arithmetic groups. In: Proc. Int. Congress Math. Vancouver, pp. 435–442. Vancouver 1974Google Scholar
  2. 2.
    Borel, A.: Introduction aux groupes arithmétiques. Paris: Hermann 1969Google Scholar
  3. 3.
    Grunewald, F., Helling, H., Mennicke, J.: SL2 over complex quadratic number fields. I. Algebra i Logica17, 512–580 (1978)Google Scholar
  4. 4.
    Harder, G.: On the cohomology of SL2(\(\mathcal{O}\)). In: Liegroups and their representations. Proc. of the Summer School on Group Repres., pp. 139–150. London: Hilger 1975Google Scholar
  5. 5.
    Harder, G.: On the cohomology of discrete arithmetically defined groups. In: Proc. of the Int. Colloq. on Discrete Subgroups of Lie Groups and Applications to Moduli, Bombay 1973, pp. 129–160. Oxford: Oxford University Press 1975Google Scholar
  6. 6.
    Mendoza, E.: Cohomology ofPGL2 over imaginary quadratic integers. Thesis, Bonn 1979Google Scholar
  7. 7.
    Riley, R.: A quadratic parabolic group. Math. Proc. Camb. Phil. Soc.77, 281–288 (1975)Google Scholar
  8. 8.
    Riley, R.: An elliptical path from parabolic representations to hyperbolic structures. In: Topology of low-dimensional manifolds. Lecture Notes in Mathematics 722, pp. 99–132. Berlin, Heidelberg, New York: Springer 1979Google Scholar
  9. 9.
    Serre, J.-P.: Le problème des groupes de congruence pour SL2. Ann. of Math.92, 489–527 (1972)Google Scholar
  10. 10.
    Thurston, W.P.: The geometry and topology of 3-manifolds. Mimeographes notes. Princeton: Princeton University Press 1978Google Scholar
  11. 11.
    Wielenberg, N.: The structure of certain subgroups of the Picard group. Math. Proc. Camb. Phil. Soc.84, 427–436 (1978)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Joachim Schwermer
    • 1
  1. 1.Sonderforschungsbereich Theoretische Mathematik der UniversitätBonn 1Germany

Personalised recommendations