Advertisement

Mathematische Annalen

, Volume 178, Issue 2, pp 119–130 | Cite as

On Dehn's algorithm and the conjugacy problem

  • Paul E. Schupp
Article

Keywords

Conjugacy Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Dehn, M.: Transformation der Kurven auf zweiseitigen Flächen. Math. Ann.72, 413–421 (1912).Google Scholar
  2. 2.
    —— Über unendliche diskontinuierliche Gruppen. Math. Ann.71, 116–144 (1911).Google Scholar
  3. 3.
    Greendlinger, M.: On Dehn's algorithms for the word problem. Comm. Pure Appl. Math.13, 67–83 (1960).Google Scholar
  4. 4.
    —— On Dehn's algorithms for the conjugacy and word problems with applications. Comm. Pure Appl. Math.13, 641–677 (1960).Google Scholar
  5. 5.
    —— Solutions of the word problems for a class of groups by means of Dehn's algorithm, and of the conjugacy problem by means of a generalization of Dehn's algorithm. Doklady Akad. Nauk SSSR154, 507–509 (1964).Google Scholar
  6. 6.
    —— Solution of the conjugacy problem for a class of groups coinciding with their anti-centers, by means of the generalized Dehn algorithm. Doklady Akad. Nauk SSSR158, 1254–1257 (1964).Google Scholar
  7. 7.
    —— On the word problem and the conjugacy problem. Izv. Akad. Nauk SSSR Ser. Mat.29, 245–268 (1965).Google Scholar
  8. 8.
    Lyndon, R. C.: On Dehn's algorithm. Math. Ann.166, 208–228 (1966).Google Scholar
  9. 9.
    Ore, O.: Theory of graphs. Providence, 1962.Google Scholar
  10. 10.
    Schiek, H.: Ähnlichkeitsanalyse von Gruppenrelationen. Acta Math.96, 157–252 (1956).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • Paul E. Schupp
    • 1
  1. 1.Department of MathematicsUniversity of IllinoisUrbana

Personalised recommendations