Journal of comparative physiology

, Volume 127, Issue 3, pp 215–227

Short-term rhythms in foraging behaviour of the common vole,Microtus arvalis

  • Serge Daan
  • Steven Slopsema
Article

Summary

  1. 1.

    The common vole,Microtus arvalis, like other vole species, in captivity has a short-term activity rhythm in daytime, with a period of circa two hours. Trapping records show that this rhythm exists also in field conditions, with the population in synchrony to some degree; a correlation of trapping frequency with vole predation by kestrels indicates that it reflects the true natural behaviour.

     
  2. 2.

    Lehmann's (1976) evidence inMicrotus agrestis that the short-term activity rhythm is essentially a feeding rhythm is supported for the common vole by separate recording of wheel running, feeding and nestbox occupation.

     
  3. 3.

    The short-term rhythm is phase-locked to dawn. There is fair intraindividual constancy from day to day in the timing of meals, but interindividual variation causes a gradual breakdown of population synchrony in the course of the day, both in the field and in captive isolation.

     
  4. 4.

    The frequency of the rhythm may be evolutionarily adjusted to metabolic demands of the species, as suggested by its dependence on body weight, but remains relatively invariant in the face of experimental (temperature) manipulation of metabolic expenditure. In the absence of food during the day, feeding attempts recur with the same timing as meals did before: periodic changes in satiety, related to food intake and digestion are insufficient to account for such changes in feeding motivation.

     
  5. 5.

    The risk of being killed by a kestrel is lower for voles active in phase with the population majority than for voles out of phase with the population: there is safety in numbers. Numbers vary dramatically in vole populations, however, and the generality of predatory selection for prey synchrony remains to be tested.

     
  6. 6.

    Foraging behaviour of the common vole is regulated by a circadian timing system even though feeding is spread evenly over night and day. The adaptive advantage of circadian entrustment with the timing of feeding motivation above meal timing by digestive processes is sought in the individual repetition of daily patterns as the optimal strategic answer to temporal day-to-day correlations in the environment.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aschoff, J.: Spontane Lokomotorische Aktivität, Handb. Zool, Vol. 8, Lieferg. 30, pp. 1–76. Berlin: de Gruyter 1962Google Scholar
  2. Brink, F.H. van den: Zoogdierengids van Europa ten westen van 30 ° oosterlengte. Amsterdam-Brüssel: Elsevier 1955Google Scholar
  3. Davis, D.H.S.: Rhythmic activity in the short-tailed voleMicrotus. J. Anim. Ecol.2, 232–238 (1933)Google Scholar
  4. Dawkins, R.: The selfish gene. New York-Oxford: Oxford Univ. Press 1976Google Scholar
  5. Ebbinge, C., Canters, K., Drent, R.: Foraging routines and estimated daily food intake in barnacle geese wintering in the northern Netherlands. Wildfowl26, 5–19 (1975)Google Scholar
  6. Enright, J.T.: The circadian tape recorder and its entrainment. In: Physiological adaptation to the environment (ed. F.J. Vernberg), pp. 465–476. New York: Intext 1975Google Scholar
  7. Erkinaro, E.: Der Phasenwechsel der lokomotorischen Aktivität beiMicrotus agrestis (L.),M. arvalis (Pall.) undM. oeconomus (Pall.). Aquilo (Ser. Zool.)8, 1–29 (1969)Google Scholar
  8. Erkinaro, E.: Short-term rhythm of locomotor activity within the 24-h-period in the Norwegian lemming,Lemmus lemmus, and water vole,Arvicola terrestris. Aquilo (Ser. Zool.)14, 46–58 (1973)Google Scholar
  9. Fisher, K.C., Needler, M.E.: Spontaneous activity of the lemmingDicrostonyx groenlandicus richardsoni Merriam as indicated in 24-hour records of oxygen consumption. J. Cell Comp. Physiol.50, 293–308 (1957)Google Scholar
  10. Frisch, K. von: Die Sonne als Kompaß im Leben der Bienen. Experientia6, 210–221 (1950)Google Scholar
  11. Geertsema, S., Reddingius, J.: Preliminary considerations in the simulation of behaviour. In: Motivational control systems analysis. (ed. D.J. McFarland), pp. 355–405. London — New York — San Francisco: Academic Press 1974Google Scholar
  12. Getz, L.L.: Influence of light on the activity of the redback vole. Univ. Connecticut Occ. Pap. (Biol.)1, 83–107 (1968)Google Scholar
  13. Grodzinski, W.: Influence of food upon the diurnal activity of small rodents. Symp. Theriol., Praha, 134–140 (1962)Google Scholar
  14. Günther, B., Guerra, E.: Biological similarities. Acta Physiol. Lat. Am.5, 169–186 (1955)Google Scholar
  15. Hansson, L.: Small rodent food, feeding and population dynamics. Oikos22, 183–198 (1971)Google Scholar
  16. Hill, A.V.: The dimensions of animals and their muscular dynamics. Sci. Prog.38, 209–230 (1950)Google Scholar
  17. Hörnicke, H., Batsch, F.: Coecotrophy in rabbits — A circadian function. J. Mammal.58, 240 (1977)Google Scholar
  18. Joenje, W.: Production and structure in the early stages of vegetation development in the Lauwerszee-polder, Vegatatio29, 101–108 (1974)Google Scholar
  19. Kleiber, M.: The fire of life. 2nd ed. Huntington: Krieger 1975Google Scholar
  20. Kramer, G.: Weitere Analyse der Faktoren, welche die Zugaktivität der gekäfigten Vogels orientieren. Naturwissenschaften37, 377–378 (1950)Google Scholar
  21. Lehmann, U.: Short-term and circadian rhythms in the behaviour of the vole,Microtus agretis (L.). Oecologia23, 185–199 (1976)Google Scholar
  22. Levitsky, D.A.: Feeding patterns of rats in response to fasts and changes in environmental conditions. Physiol. Behav.5, 291–300 (1970)Google Scholar
  23. Ostermann, K.: Zur Aktivität heimischer Muriden und Gliriden. Zool. Jahrb. Allg. Zool. Physiol. Tiere66, 355–388 (1956)Google Scholar
  24. Pittendrigh, C.S.: Circadian oscillations in cells and the circadian organization of multicellular systems. In: The neurosciences: Third study program (eds. F.O. Schmitt, F.G. Worden), pp. 437–458. Cambridge, Mass.: MIT Press 1974Google Scholar
  25. Pittendrigh, C.S., Daan, S.: A functional analysis of circadian pacemakers in nocturnal rodents. IV. Entrainment: pacemaker as clock. J. comp. Physiol.106, 291–331 (1976)Google Scholar
  26. Ruiter, L. de, Wiepkema, P.R., Reddingius, J.: Ethological and neurological aspects of the regulation of food intake. Ann. NY Acad. Sci.157, 1204–1216 (1969)Google Scholar
  27. Saint Girons, M.C.: Le rythme nycthéméral d'activité du campagnol roux,Clethrionomys glareolus (Schreber), 1780. I. Mammalia24, 516–532 (1960); II Mammalia25, 342–357 (1961)Google Scholar
  28. Saint Girons, M.C.: Le rythme circadien de l'activité chez les mammifères holarctiques. Mém. Mus. nat. Hist. nat. (A, Zool.)40, 101–187 (1966)Google Scholar
  29. Silverstone, T. (ed.): Appetite and food intake. Dahlem Workshop Report. Berlin: Abakon 1976Google Scholar
  30. Stahl, W.R.: Similarity and dimensional methods in biology. Science137, 205–212 (1962)Google Scholar
  31. Stebbins, L.L.: Short activity periods in relation to circadian rhythms inClethrionomys gapperi. Oikos26, 32–38 (1975)Google Scholar
  32. Szymanski, J.S.: Aktivität und Ruhe bei Tieren und Menschen. Z. allg. Physiol.18, 105–162 (1920)Google Scholar
  33. Wiegert, R.G.: Respiratory energy loss and activity patterns in the meadow vole,Microtus pennsylvanicus pennsylvanicus. Ecology42, 245–253 (1961)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Serge Daan
    • 1
  • Steven Slopsema
    • 1
  1. 1.Zoölogisch LaboratoriumRijksuniversiteit GroningenAA Haren (Gr.)The Netherlands

Personalised recommendations