Advertisement

Mathematische Annalen

, Volume 218, Issue 1, pp 67–96 | Cite as

Units in the modular function field. I

  • Dan Kubert
  • Serge Lang
Article

Keywords

Function Field Modular Function Modular Function Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]
    Baker, A.: Contributions to the theory of diophantine equations. Phil. Trans. Royal Soc. London Series A, Math. and Physical Sciences No.1139, Vol. 263 (1968), pp. 173–208Google Scholar
  2. [B-C]
    Baker, A., Coates, J.: Integer points on curves of genus 1. Proc. Camb. Phil. Soc.67 (1970), pp. 595–602Google Scholar
  3. [Br]
    Brylinski, J.: Torsion sur les courbes élliptiques (to appear)Google Scholar
  4. [Ch 1]
    Chabauty, C.: Sur le théorème fondamental de la théorie des points entiers et pseudo-entiers des courbes algébriques. C. R. Acad. Sci. Paris No.217 (1943), pp. 336–338Google Scholar
  5. [Ch 2]
    Chabauty, C.: Démonstration de quelques lemmes de rehaussement. C. R. Acad. Sci. Paris No.217 (1943), pp. 413–415Google Scholar
  6. [C-W]
    Chevalley, C., Weil, A.: Un théorème d'arithmétique sur les courbes algébriques. C. R. Acad. Sci. Paris (1930), pp. 570–572Google Scholar
  7. [C]
    Clemens, H.: On Prym varieties (to appear)Google Scholar
  8. [Co]
    Coates, J.: An effective analogue of a theorem of Thue. Acta Arithmetica, three papers:I, Vol. 15 (1969), pp. 279–305;II, Vol. 16 (1970), pp. 399–412;III, Vol. 16 (1970), pp. 425–435Google Scholar
  9. [De-Ra]
    Deligne, P., Rapoport, M.: Les schémas de modules des courbes élliptiques. Modular functions of one variable II. Springer Lecture Notes No.349, pp. 143–316Google Scholar
  10. [Dem 1]
    Demjanenko, V. A.: Torsion of elliptic curves. Izv. Akad. Nauk SSSR, Ser. Mat. Tom35 (1971), No. 2, AMS translation, pp. 289–318Google Scholar
  11. [Dem 2]
    Demjanenko, V. A.: On the uniform boundedness of the torsion of elliptic curves over algebraic number fields. Izv. Akad. Nauk SSSR, Ser. Mat. Tom36 (1972), No. 3, AMS translation, pp. 477–490Google Scholar
  12. [EGA]
    Grothendieck, A.: Eléments de géometrie algébrique. Pub. IHES, ChapterIV, 7.8.3, 7.8.6Google Scholar
  13. [Dr]
    Drinfeld, V. G.: Two theorems on modular curves. Functional analysis and its applications, Vol.7, No. 2, translated from the Russian, April–June 1973, pp. 155–156Google Scholar
  14. [F]
    Fricke, R.: Elliptische Funktionen und ihre Anwendungen, Vol. 1, pp. 450–451: Leipzig: Teubner Verlag 1930Google Scholar
  15. [G]
    Gelfond, A. O.: Transcendental and algebraic numbers. Moscow, 1952; translated, Dover press, 1960Google Scholar
  16. [H]
    Hasse, H.: Neue Begründung der komplexen Multiplikation, I and II. J. Reine Angew. Math.157 (1927), pp. 115–139 and165 (1931), pp. 64–88Google Scholar
  17. [He 1]
    Hellegouarch, Y.: Une propriété arithmétique des points exceptionnels rationnels d'ordre pair d'une cubique de genre 1, C. R. Acad. Sci. Paris260 (1965), pp. 5989–5992Google Scholar
  18. [He 2]
    Hellegouarch, Y.: Applications d'une propriété arithmétique des points exceptionnels d'ordre pair d'une cubique de genre 1. C. R. Acad. Sci. Paris 260 (1965), pp. 6256–6258Google Scholar
  19. [He 3]
    Hellegouarch, Y.: Étude des points d'ordre fini des variétés abéliennes de dimension un definies sur un anneau principal, J. Reine angew. Math.244 (1970), pp. 20–36Google Scholar
  20. [He 4]
    Hellegouarch, Y.: Points d'ordre fini sur les courbes élliptiques. C. R. Acad. Sci. Paris Ser. A–B273 (1971), pp. 540–543Google Scholar
  21. [Iw]
    Iwasawa, K.: Lectures onp-adicL-functions. Annals of Math. Studies No. 74Google Scholar
  22. [K]
    Klein, F.: Über die elliptischen Normalkurven dern-ten Ordnung und die zugehörigen Modulfunktionen dern-ten Stufe. Leipziger Abh. Bd. 13 (1885), p. 339Google Scholar
  23. [K-F]
    Klein, F., Fricke, R.: Vorlesungen über die Theorie der elliptischen Modulfunktionen, Vol. 2. Johnson Reprint Corporation, NY, and Teubner Verlag, Stuttgart 1966 (from the 1890 edition)Google Scholar
  24. [K]
    Kubert, D.: Universal bounds on the torsion of elliptic curves. J. London Math. Soc. (to appear)Google Scholar
  25. [L 1]
    Lang, S.: Elliptic functions. Addison Wesley, Reading (1974)Google Scholar
  26. [L 2]
    Lang, S.: Integral points on curves. Pub. IHES (1960)Google Scholar
  27. [L 3]
    Lang, S.: Diophantine geometry. New York: Interscience 1962Google Scholar
  28. [L 4]
    Lang, S.: Isogenous generic elliptic curves. Am. J. Math. 1972Google Scholar
  29. [Le]
    Leopoldt, H.: Eine Verallgemeinung der Bernoullischen Zahlen. Abh. Math. Sem. Hamburg (1958), pp. 131–140Google Scholar
  30. [Ma]
    Manin. J.: Parabolic points and zeta-functions of modular curves. Izv. Akad. Nauk SSSR, Ser. Mat. Tom36 (1972), No. 1, AMS translation, pp. 19–64Google Scholar
  31. [Mu]
    Mumford, D.: Prym varieties (to appear)Google Scholar
  32. [N]
    Newman, M.: Construction and application of a class of modular functions. Proc. London Math. Soc. (3)7 (1957), pp. 334–350Google Scholar
  33. [Ra]
    Ramachandra, K.: Some applications of Kronecker's limit formula. Ann. of Math.80 (1964), pp. 104–148Google Scholar
  34. [Re]
    Recillas, S.: A relation between curves of genus three and curves of genus 4. Ph. D. dissertation, Brandeis University 1970 (see especially, pp. 107–108, and Theorem 2 of Chapter IV et sequences)Google Scholar
  35. [Rob]
    Robert, G.: Unités élliptiques. Bull. Soc. Math. France, Memoire No.36 (1973)Google Scholar
  36. [Ro]
    Roth, P.: Über Beziehungen zwischen algebraischen Gebilden von Geschlechtern drei und vier. Monatshefte22 (1911)Google Scholar
  37. [Sh]
    Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Iwanami Shoten and Princeton University Press 1971Google Scholar
  38. [Si]
    Siegel, C. L.: Über einige Anwendungen diophantischer Approximationen. Abh. Preuss. Akad. Wiss. Phys. Math. Kl. (1929), pp. 41–69Google Scholar
  39. [We]
    Weil, A.: Arithmétique et géometrie sur les variétés algébriques. Act. Sci. et Ind. No.206. Paris: Hermann 1935Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Dan Kubert
    • 1
  • Serge Lang
    • 1
  1. 1.Department of MathematicsYale UniversityNew HavenUSA

Personalised recommendations