Journal of Comparative Physiology A

, Volume 157, Issue 2, pp 183–198 | Cite as

Mechanisms of dance orientation in the Asian honey beeApis florea L.

  • Fred C. Dyer


Early studies of dance communication inApis florea had shown that waggle dances are not performed on a vertical plane and oriented to gravity, as in the other species ofApis, but instead take place on the flattened top of the exposed comb and are oriented to celestial cues directly. More recent experiments showed thatA. florea can dance in the absence of a view of the sun or blue sky, but did not establish what mechanism permitted this orientation. I now report that dances can be oriented directly to landmarks visible from the nest, the first evidence of an environmental feature other than celestial cues or gravity being involved in dance orientation. Landmarks near the nest are probably used to refer to celestial cues, in a fashion analogous to the use of broad features of the landscape by honeybees in order to learn the sun's course, which permits them to determine their flight angle on overcast days or at night, and to compensate accurately for solar movement.Apis florea may therefore be able to learn the sun's course with respect to two sets of landmarks.

In other experiments I have examined the influence of slope onA. florea's dance orientation to visual references. In the first extensive observations of its dances on a vertical plane, I have amply confirmed that this species cannot transpose light and gravity in setting its dance angle, as the other species ofApis can. Nor do dancers orient so as to match visual information seen during the dance with that remembered from the flight. Patterns in the data when the same patch of sky was presented from different angles suggest instead thatA. florea continues to orient to projections of celestial cues onto the horizontal plane even when dancing on a steep slope. This compensation for slope may involve an ability to detect gravity and factor it out in aligning the dance to celestial cues.

These insights suggest thatA. florea's dance orientation system has been adapted to requirements imposed by its nesting behavior, and has diverged sharply from the system shared by the other species ofApis.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batschelet E (1965) Statistical methods for the analysis of problems in animal orientation and certain biological rhythms. American Institute of Biological Sciences, Washington DCGoogle Scholar
  2. Batschelet E (1972) Recent statistical methods for orientation data. In: Galler SR, Schmidt-Koenig K, Jacobs GJ, Belleville RE (eds) Animal orientation and navigation. US Government Printing Office, Washington DC, pp 61–92Google Scholar
  3. Beier W, Lindauer M (1970) Der Sonnenstand als Zeitgeber für die Biene. Apidologie 1:5–28Google Scholar
  4. Brines ML, Gould JL (1982) Skylight polarization patterns and animal orientation. J Exp Biol 96:69–91Google Scholar
  5. DeJong D (1982) The orientation of comb-building by honey bees. J Comp Physiol 147:495–501Google Scholar
  6. Dyer FC (1984) PhD thesis, Princeton UniversityGoogle Scholar
  7. Dyer FC (1985) Nocturnal orientation of the Asian honey beeApis dorsata. Anim Behav 33:769–774Google Scholar
  8. Dyer FC, Gould JL (1981) Honey bee orientation: a backup system for cloudy days. Science 214:1041–1042Google Scholar
  9. Dyer FC, Gould JL (1983) Honey bee navigation. Am Sci 71:587–597Google Scholar
  10. Edrich W (1977) Interaction of light and gravity in the orientation of the waggle dance of honey bees. Anim Behav 25:342–363Google Scholar
  11. Frisch K von (1946) Die Tänze der Bienen. Oester Zool 1:1–32Google Scholar
  12. Frisch K von (1949) Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen der Bienen. Experientia 5:142–148Google Scholar
  13. Frisch K von (1962) Über die durch Licht bedingte Missweisung bei den Tänzen im Bienenstock. Experientia 18:49–53Google Scholar
  14. Frisch K von (1967) The dance language and orientation of bees. Belknap/Harvard, Cambridge, MassachusettsGoogle Scholar
  15. Frisch K von, Lindauer M (1954) Himmel und Erde in Konkurrenz bei der Orientierung der Bienen. Naturwissenschaften 41:245–253Google Scholar
  16. Frisch K von, Lindauer M, Schmiedler F (1960) Wie erkennt die Biene den Sonnenstand bei geschlossener Wolkendecke? Naturwiss Rundschau: 169–172Google Scholar
  17. Gould JL, Kirschvinck JL, Deffeyes KS, Brines ML (1980) Orientation of demagnetized bees. J Exp Biol 86:1–8Google Scholar
  18. Hölldobler B (1980) Canopy orientation: a new kind of orientation in ants. Science 210:86–88Google Scholar
  19. Horn E (1973) Die Verarbeitung des Schwerereizes bei der Geotaxis der höheren Bienen (Apidae). J Comp Physiol 82:397–406Google Scholar
  20. Horn E (1975) Mechanisms of gravity processing by leg and abdominal gravity receptors in bees. J Insect Physiol 21:673–679Google Scholar
  21. Jander R (1957) Die optische Richtungsorientierung der roten Waldameise (Formica rufa L.). Z Vergl Physiol 40:162–238Google Scholar
  22. Jander R, Jander U (1970) Über die Phylogenie der Geotaxis innerhalb der Bienen (Apoidea). Z Vergl. Physiol 66:355–368Google Scholar
  23. Koeniger N (1976) Neue Aspekte der Phylogenie innerhalb der GattungApis. Apidologie 7:357–366Google Scholar
  24. Koeniger N, Koeniger G (1980) Observations and experiments on migration and dance communication ofApis dorsata in Sri Lanka. J Apic Res 19:21–34Google Scholar
  25. Koeniger N, Koeniger G, Punchihewa RKW, Fabritius Mo, Fabritius Mi (1982) Observations and experiments on dance communication ofApis florea in Sri Lanka. J Apic Res 21:45–52Google Scholar
  26. Lindauer M (1956) Über die Verständigung bei indischen Bienen. Z Vergl Physiol 38:521–557Google Scholar
  27. Lindauer M (1960) Communication among social bees. Harvard, Cambridge, MassachusettsGoogle Scholar
  28. Lindauer M (1976) Recent advances in the orientation and learning of honey bees. Proc 15th Int Congr Entomol:450–460Google Scholar
  29. Martin H, Lindauer M (1977) Der Einfluß des Erdmagnetfeldes auf die Schwereorientierung der Honigbiene. J Comp Physiol 122:145–187Google Scholar
  30. Seeley TD, Seeley RH, Akratanakul P (1982) Colony defense strategies of the honey bees in Thailand. Ecol Monogr 52:43–63Google Scholar
  31. Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Invertebrate photoreception. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, vol VII/6 C, pp 287–616)Google Scholar
  32. Wehner R (1982) Himmelsnavigation bei Insekten: Neurophysiologie und Verhalten. Neujahrsbl Naturforsch Ges Zürich 184:1–132Google Scholar
  33. Wehner R (1984) Astronavigation in insects. Annu Rev Entomol 29:277–298Google Scholar
  34. Wehner R, Rossel S (1985) The bee's celestial compass — A case study in behavioural neurobiology. In: Hölldobler B, Lindauer M (eds) Experimental behavioural ecology. G Fischer, Stuttgart New York (Fortschr Zool 31, pp 11–53)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Fred C. Dyer
    • 1
  1. 1.Department of BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations