Advertisement

Mathematische Annalen

, Volume 212, Issue 4, pp 285–315 | Cite as

Newforms and functional equations

  • Wen-Ch'ing Winnie Li
Article

Keywords

Functional Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atkin, A., Lehner, J.: Hecke operators on Γ0(m). Math. Ann.185, 134–160 (1970)Google Scholar
  2. 2.
    Casselman, W.: On some results of Atkin and Lehner. Math. Ann.201, 301–314 (1973)Google Scholar
  3. 3.
    Hecke, E.: Mathematische Werke. Göttingen: Vandenhoeck und Ruprecht 1959Google Scholar
  4. 4.
    Jacquet, H.: Automorphic forms on GL (2), Part II. Springer Lecture Notes, No.278 (1972)Google Scholar
  5. 5.
    Mazur, B.: Courbes elliptiques et symboles modulaires. Séminaire Bourbaki, 24e année, 1971/72; n0 414Google Scholar
  6. 6.
    Miyake, T.: On automorphic forms on GL2 and Hecke operators. Annals of Math.94, 174–189 (1971)Google Scholar
  7. 7.
    Ogg, A.: On the eigenvalues of Hecke operators. Math. Ann.179, 101–108 (1969)Google Scholar
  8. 8.
    Ogg, A.: On a convolution ofL-series. Inventiones math.7, 297–312 (1969)Google Scholar
  9. 9.
    Petersson, H.: Konstruktion der sämtlichen Lösungen einer Riemannschen Funktionalgleichung durch Dirichlet-Reihen mit Eulerscher Produktentwicklung, I, II, III. Math. Ann.116, 401–412 (1939), and117, 39–64 and 277–300 (1940–1941)Google Scholar
  10. 10.
    Rankin, R.: Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions. II. Proc. Camb. Phil. Soc.35, 357–372 (1939)Google Scholar
  11. 11.
    Selberg, A.: On the estimation of Fourier coefficients of modular forms. Proc. Symposium Pure Math. (Amer. Math. Soc.) VIII, 1–15 (1965)Google Scholar
  12. 12.
    Serre, J.: Formes modulaires et fonctions zêtap-adiques. Summer School on Modular Functions, Antwerp (1972). Springer Lecture Notes, No.350, 191–268, Berlin-Heidelberg-New York: Springer 1972Google Scholar
  13. 13.
    Serre, J.: Facteurs locaux des fonctions zêta des variétés algébriques. Séminaire Delange-Pisot-Poitou (Théorie des Nombres), 11e année, 1969/70, n0 19Google Scholar
  14. 14.
    Shimura, G.: On modular forms of half integral weight. Annals of Math.97, 440–481 (1973)Google Scholar
  15. 15.
    Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Math. Soc. Japan11 (1971), Princeton Univ. PressGoogle Scholar
  16. 16.
    Weil, A.: Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen. Math. Ann.168, 149–156 (1967)Google Scholar
  17. 17.
    Weil, A.: Dirichlet series and automorphic forms. Springer Lecture Notes, No.189. Berlin-Heidelberg-New York: Springer 1971Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Wen-Ch'ing Winnie Li
    • 1
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations