Marine Biology

, Volume 108, Issue 2, pp 293–301

Potential impact of a toxic dinoflagellate (Alexandrium excavatum) bloom on survival of fish and crustacean larvae

  • B. Robineau
  • J. A. Gagné
  • L. Fortier
  • A. D. Cembella
Article

Abstract

We investigated the impact of neurotoxins produced by the dinoflagellateAlexandrium excavatum on survival of Atlantic mackerel (Scomber scombrus) and American lobster (Homarus americanus) larvae, respectively reared from eggs and from female lobster, collected in 1988 from the southern Gulf of St. Lawrence, Canada. Sensitivity to the toxins was first verified by exposing larvae of both species to various concentrations of toxicA. excavatum (treatment) and non-toxicA. tamarense (control). Daily mortality rates ranged from 65 to 96% among mackerel larvae directly fed upon toxic cells and reached 36% in postlarvae exposed to toxic microzooplankton. Lobster larvae were apparently immune to the toxins, which they concentrated up to five times relative to vector toxicities. Bioassays conducted on mackerel larvae by exposure to natural plankton samples collected in situ during a bloom of toxicA. excavatum confirmed that exposure to the toxins could also have lethal effects in natural ecosystems. We conclude that the current proliferation of toxic dinoflagellates threatens early survival of finfish larvae and their recruitment to adult populations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Adams, J. A., Seaton, D. D., Buchanan, J. B., Longbottom, M. R. (1968). Biological observations associated with the toxic phytoplankton bloom of the east coast. Nature, Lond. 220: 24–25Google Scholar
  2. Anderson, D. M., White, A. W., Baden, D. G. (1985). Toxic dinoflagellates. Elsevier, New YorkGoogle Scholar
  3. Balech, E. (1985). The genusAlexandrium orGonyaulax of thetamarensis group. In: Anderson, D. M., White, A. W., Baden, D. G. (eds.) Toxic dinoflagellates. Elsevier, New York, p. 33–38Google Scholar
  4. Bardouil, M., Lassus, P., Berthome, J. P., Bohec, M. (1988). Cinétique de contamination/décontamination D.S.P. et P.S.P. sur des coquillages commerciaux. In: Lassus, P. (coord.) Efflorescences phytoplanctoniques: bilan des études effectuées en quatre ans. Rapport IFREMER DERO-88-03-MR/DERO-88-07-EL, Nantes, p. 58–80Google Scholar
  5. Boyer, G. L., Sullivan, J. J., Andersen, R. J., Harrison, P. J., Taylor, F. J. R. (1985a). Toxin production in three isolates ofProtogonyaulx tamarensis. In: Anderson, D. M., White, A. W., Baden, D. G. (eds.) Toxic dinoflagellates. Elsevier, New York, p. 281–286Google Scholar
  6. Boyer, G. L., Sullivan, J. J., Andersen, R. J., Taylor, F. J. R., Harrison, P. J., Cembella, A. D. (1986). Use of high-performance liquid chromatography to investigate the production of paralytic shellfish toxins byProtogonyaulax spp. in culture. Mar. Biol. 93: 361–369Google Scholar
  7. Boyer, G. L., Sullivan, J. J., LeBlanc, M., Andersen, R. J. (1985b). The assimilation of PSP toxins by the copepodTigriopus californicus from dietaryProtogonyaulax catenella. In: Anderson, D. M., White, A. W., Baden, D. G. (eds.) Toxic dinoflagellates. Elsevier, New York, p. 407–412Google Scholar
  8. Bricelj, V. M., Lee, J. H., Cembella, A. D., Anderson, D. M. (1990). Uptake ofAlexandrium fundyense byMytilus edulis andMercenaria mercenaria under controlled conditions. In: Graneli, E., Sundström, B., Edler, L., Anderson, D. M. (eds.) Toxic marine phytoplankton. Academic Press, New York, p. 269–274Google Scholar
  9. Cembella, A. D., Sullivan, J. J., Boyer, G. L., Taylor, F. J. R., Andersen, R. J. (1987). Variation in paralytic shellfish toxin composition within theProtogonyaulax tamarensis/catenella species complex; red tide dinoflagellates. Biochem. Syst. Ecol. 15: 171–186Google Scholar
  10. Cembella, A. D., Therriault, J. C. (1989). Population dynamics and toxin composition ofProtogonyaulax tamarensis from the St. Lawrence Estuary. In: Okaichi, T., Anderson, D. M., Nemoto, T. (eds.) Red tides: biology, environmental science and toxicology. Elsevier, New York, p. 81–84Google Scholar
  11. Cembella, A. D., Therriault, J.-C., Béland, P. (1988). Toxicity of cultured isolates and natural populations ofProtogonyaulax tamarensis from the St. Lawrence Estuary. J. Shellfish Res. 7: 611–621Google Scholar
  12. Chang, E. S., Conklin, D. E. (1983). Lobster (Homarus) hatchery techniques. In: McVey, J. (ed.) Handbook of mariculture, Vol. 1. C.R.C. Press, Boca Raton, Florida, p. 271–275Google Scholar
  13. D'Abramo, L. R., Conklin, D. E. (1985). Lobster aquaculture. In: Hunter, J. V., Brown, E. E. (eds.) Crustacean and mollusk aquaculture in the United States. Avi Publishers, Westport, Connecticut, p. 159–201Google Scholar
  14. De Lafontaine, Y., El-Sabh, M. I., Sinclair, M., Messieh, S. N., Lambert, J. D. (1984). Structure océanographique et distribution spatio-temporelle d'oeufs et de larves de poissons dans l'estuaire maritime et la partie ouest du golfe Saint-Laurent. Sciences Techqs. Eau (Montréal) 17: 43–50Google Scholar
  15. De Lafontaine, Y., Gascon, D. (1989). Ontogenetic variation in the vertical distribution of eggs and larvae of Atlantic mackerel (Scomber scombrus). Rapp. R.-v. Réun. Cons. int. Explor. Mer 191: 137–145Google Scholar
  16. De Lafontaine, Y., Sinclair, M., Messieh, S. N., El-Sabh, M. I., Lassus, C. (1981). Ichthyoplankton distribution in the western Gulf of St. Lawrence. Rapp. P.-v. Réun. Cons. int. Explor. Mer 178: 185–187Google Scholar
  17. Evans, M. H. (1972). Tetrodoxin, saxitoxin and related substances: their applications in neurobiology. Int. Rev. Neurobiol. 15: 83–166Google Scholar
  18. Fortier, L., Harris, R. P. (1989). Optimal foraging and density-dependent competition in marine fish larvae. Mar. Ecol. Prog. Ser. 51: 19–33Google Scholar
  19. Foxall, T. L., Shoptaugh, N. H., Ikawa, M., Sasner, J. J. (1979). Secondary intoxication with PSP inCancer irroratus. In: Taylor, D. L., Seliger, H. H. (eds.) Toxic dinoflagellate blooms. Elsevier, North Holland, p. 413–418Google Scholar
  20. Gosselin, S., Fortier, L., Gagné, J. A. (1989). Vulnerability of marine fish larvae to the toxic dinoflagellateProtogonyaulax tamarensis. Mar. Ecol. Prog. Ser. 57: 1–10Google Scholar
  21. Guillard, R. R. L. (1975). Culture of phytoplankton for feeding marine invertebrates. In: Smith, W. L., Chanley, M. H. (eds.) Culture of marine invertebrate animals. Plenum Press, New York, p. 29–60Google Scholar
  22. Hallegraeff, G. M., Steffensen, D. A., Wetherbee, R. (1988). Three estuarine Australian dinoflagellates that can produce paralytic shellfish toxins. J. Plankton Res. 10: 533–541Google Scholar
  23. Hayashi, T., Shimizu, Y., White, A. A. (1982). Toxin profile of herbivorous zooplankton during aGonyaulax bloom in the Bay of Fundy. Bull. Jap. Soc. scient. Fish. 48: 1673Google Scholar
  24. Hedgecock, D. (1983). Maturation and spawning of the American lobster,Homarus americanus. In: McVey, J. (ed.) Handbook of mariculture. Vol. 1. C.R.C. Press, Boca Raton, Florida, p. 261–270Google Scholar
  25. Hugues, J. T., Shleser, R. A., Tchobanoglous, G. (1974). A rearing tank for lobster larvae and other aquatic species. Progve Fish Cult. 36: 129–132Google Scholar
  26. Hunter, J. R., Kimbrell, C. A. (1980). Early life history of Pacific mackerel,Scomber japonicus. Fish. Bull. U.S. 78: 89–101Google Scholar
  27. Huntley, M., Sykes, P., Rohan, S., Marin, V. (1986). Chemically mediated rejection of dinoflagellate prey by the copepodsCalanus pacificus andParacalanus parvus: mechanism, occurrence and significance. Mar. Ecol. Prog. Ser. 28: 105–120Google Scholar
  28. Ives, J. D. (1985). The relationship betweenGonyaulax tamarensis cell toxin levels and copepod ingestion rates. In: Anderson, D. M., White, A. W., Baden, D. G. (eds.) Toxic dinoflagellates. Elsevier, New York, p. 413–418Google Scholar
  29. Ives, J. D. (1987). Possible mechanisms underlying copepod grazing responses to levels of toxicity in red tide dinoflagellates. J. exp. mar. Biol. Ecol. 112: 121–145Google Scholar
  30. Last, J. M. (1980). The food of twenty species of fish larvae in the west-central North Sea. Fish. Res. Tech. Rep. Minist. Agric. Fish. Fd, Directorate Fish. Res., Lowestoft, Suffolk 60: 1–44Google Scholar
  31. McClatchie, S. (1988). Functional response of the euphausidThysanoessa raschii grazing on small diatoms and toxic dinoflagellates. J. mar. Res. 46: 631–646Google Scholar
  32. Mills, L. J., Klein-MacPhee, G. K. (1979). Toxicity of the New England red tide dinoflagellate to winter flounder larvae. In: Taylor, D. L., Seliger, H. H. (eds.) Toxic dinoflagellate blooms. Elsevier, New York, p. 389–394Google Scholar
  33. Mortensen, A. M. (1985). Massive fish mortalities in the Faroe Islands caused by aGonyaulax excavata red tide. In: Anderson, D. M., White, A. W., Baden, D. G. (eds.) Toxic dinoflagellates. Elsevier, New York, p. 165–170Google Scholar
  34. Ogata, T., Kodama, M. (1986). Ichthyotoxicity found in cultured media ofProtogonyaulax spp. Mar. Biol. 92: 31–34Google Scholar
  35. Perkins, H. C. (1972). Developmental rates at various temperatures of embryos of the northern lobster (Homarus americanus Milne-Edwards). Fish. Bull. U.S. 70: 95–99Google Scholar
  36. Peterson, W. T., Ausubel, S. J. (1984). Diets and selective feeding by larvae of Atlantic mackerelScomber scombrus on zooplankton. Mar. Ecol. Prog. Ser. 17: 65–75Google Scholar
  37. Potts, G. W., Edwards, J. M. (1987). The impact of aGyrodinium aureolum bloom on inshore young fish populations. J. mar. biol. Ass. U.K. 67: 293–297Google Scholar
  38. Sasaki, G. C., McDowell Capuzzo, J., Biesiot, P. (1986). Nutritional and bioenergetic considerations in the development of the american lobsterHomarus americanus. Can. J. Fish. aquat. Sciences 43: 2311–2319Google Scholar
  39. Sellner, K. G., Olson, M. M. (1985). Copepod grazing in red tides of Chesapeake Bay. In: Anderson, D. M., White, A. W., Baden, D. G. (eds.) Toxic dinoflagellates. Elsevier, New York, p. 245–250Google Scholar
  40. Shumway, S. E., Cucci, T. L. (1987). The effects of the toxic dinoflagellateProtogonyaulax tamarensis on the feeding and behaviour of bivalve mollusks. Aquat. Toxic. 10: 9–27Google Scholar
  41. Sullivan, J. J., Jonas-Davies, J., Kentala, L. L. (1985). The determination of PSP toxins by HPLC and autoanalyser. In: Anderson, D. M., White, A. W., Baden, D. G. (eds.) Toxic dinoflagellates. Elsevier, New York, p. 275–280Google Scholar
  42. Taylor, F. J., Taylor, N. J., Walsby, J. R. (1985). A bloom of the planktonic diatom,Cerataulina pelagica, off the coast of northeastern New Zealand in 1983, and its contribution to an associated mortality of fish and benthic fauna. Int. Revue ges. Hydrobiol. 70: 773–795Google Scholar
  43. Watras, C. J., Garcon, V. C., Olson, R. J., Chilshom, S. W., Anderson, D. M. (1985). The effect of zooplankton grazing on estuarine blooms of the toxic dinoflagellateGonyaulax tamarensis. J. Plankton Res. 6: 891–908Google Scholar
  44. White, A. W. (1977). Dinoflagellate toxins as probable cause of an Atlantic herring (Clupea harengus harengus) kill, and pteropods as apparent vector. J. Fish. Res. Bd Can. 34: 2421–2424Google Scholar
  45. White, A. W. (1980). Recurrence of kills of Atlantic herring (Clupea harengus harengus) caused by dinoflagellate toxins transferred through herbivorous zooplankton. Can. J. Fish. aquat. Sciences 37: 2262–2265Google Scholar
  46. White, A. W. (1981a). Marine zooplankton can accumulate and retain dinoflagellate toxins and cause fish kills. Limnol. Oceanogr. 26: 103–109Google Scholar
  47. White, A. W. (1981b). Sensitivity of marine fishes to toxins from the red-tide dinoflagellateGonyaulax excavata and implications for fish kills. Mar. Biol. 65: 255–260Google Scholar
  48. White, A. W. (1982). Intensification ofGonyaulax blooms and shellfish toxicity in the Bay of Fundy. Tech. Rep. Fish. aquat. Sciences, Can. 1064: 1–12Google Scholar
  49. White, A. W. (1984). Paralytic shellfish toxins and finfish. In: Ragelis, E. P. (ed.) Seafood toxins. ACS Symposium Series 262. Am. Chem. Soc., Washington, D.C., p. 171–180Google Scholar
  50. White, A. W., Fukuhara, O., Anraku, M. (1989). Mortality of fish larvae from eating toxic dinoflagellates or zooplankton containing dinoflagellate toxins. In: Okaichi, T., Anderson, D. M., Nemoto, T. (eds.) Red tides: biology, environmental science and toxicology. Elsevier, New York, p. 395–398Google Scholar
  51. White, D. R. L., White, A. W. (1985). First report of paralytic shellfish poisoning in Newfoundland. In: Anderson, D. M., White, A. W., Baden, D. G. (eds.) Toxic dinoflagellates. Elsevier, New York, p. 511–516Google Scholar
  52. Williamson, G. B., Richardson, D. (1988). Bioassays for allelopathy: measuring treatment responses with independent controls. J. chem. Ecol. 14: 181–187Google Scholar
  53. Yamamori, K., Nakamura, M., Matsui, T., Hara, T. J. (1988). Gustatory responses to tetrodoxin and saxitoxin in fish: a possible mechanism for avoiding marine toxins. Can. J. Fish. aquat. Sciences 45: 2182–2186Google Scholar
  54. Yazdandoust, M. H. (1985). Cancer crab larvae and goby fish: vector and victim of paralytic shellfish poisons (PSP). In: Anderson, D. M., White, A. W., Baden, D. G. (eds.) Toxic dinoflagellates. Elsevier, New York, p. 419–424Google Scholar
  55. Yentsch, C. M., Balch, W. (1975). Lack of secondary intoxification by red tide poison in the American lobsterHomarus americanus. Envir. Letters 9: 249–254Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • B. Robineau
    • 1
  • J. A. Gagné
    • 2
  • L. Fortier
    • 1
  • A. D. Cembella
    • 2
  1. 1.Département de biologieUniversité LavalCanada
  2. 2.Institut Maurice LamontagneMinistére des Pêches et des OcéansMont-JoliCanada

Personalised recommendations