Plant and Soil

, Volume 7, Issue 2, pp 178–194 | Cite as

Plant root excretions in relation to the rhizosphere effect

I. The nature of root exudate from oats and peas
  • A. D. Rovira


The excretory products of roots of peas and oats grown aseptically in quartz sand were studied by paper chromatography. Peas were found to excrete considerable amounts of amino material during 21 days growth with 22 different amino compounds, while oats excreted less consisting of 14 amino compounds. The proportions of the various amino acids in the exudates differed between peas and oats. Fructose and glucose were excreted by both plants only during the first ten days of growth. U-V absorbing and fluorescent compounds were also excreted. The approximate amounts of sloughed-off cell material from both peas and oats after 10 and 21 days were also estimated.


Glucose Chromatography Quartz Plant Physiology Fructose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Achromieko, A. I., Über die Ausscheidung mineralischer Stoffe durch Pflanzenwurzeln. Pflanzenernähr. Düng. u. Bodenk.42, 156 (1936).Google Scholar
  2. 2).
    Allen, O. N., Experiments in Soil Bacteriology. Publ.: Burgess, Minneapolis, U.S.A. (1950).Google Scholar
  3. 3).
    Biserte, G. and Scriban, R., Les protides de l'orge. Bull. Soc. Chim. Biol.32, 959 (1950).PubMedGoogle Scholar
  4. 4).
    Boulanger, P. and Biserte, G., Chromatographie de partage des amino acides libres du plasma sanguin. Bull. Soc. Chim. Biol.31, 696 (1949).Google Scholar
  5. 5).
    Calum, C. T., Raistrick, H. and Todd, A. R., The potato eelworm hatching factor. I. Biochem. J.45, 573 (1949).Google Scholar
  6. 6).
    Cranner, B. H., Zur Biochemie und Physiologie der Grenzschichten lebender Pflanzenzellen. Meldinger Norg. LandbrukhøgskoleV, 1.Google Scholar
  7. 7).
    Forsman, B., Thesis, Institute of Physiological Botany, Univ. of Uppsala, Sweden (1955).Google Scholar
  8. 8).
    Forsyth, W. C., Colour reagents for the paper chromatography of sugars. Nature161, 239 (1948).Google Scholar
  9. 9).
    Fries, N. and Forsman, B., Quantitative determination of certain nucleic acid derivatives in pea root exudate. Physiol. Plantarum4, 410 (1951).Google Scholar
  10. 10).
    Kandler, O., Papierchromatographischer Nachweis der Aminosäureausscheidungin vitro kultivierter Maiswurzeln. Z. Naturforsch.66, 437 (1951).Google Scholar
  11. 11).
    Katznelson, H. Rouatt, J. W. and Payne, T. M., Liberation of amino acids by plant roots in relation to dessication. Nature174, 1110 (1954).PubMedGoogle Scholar
  12. 12).
    Lochhead, A. G. and Chase, F. E., Quantitative studies of soil micro-organisms V. Nutritional requirements of the predominant bacterial flora. Soil Sci.55, 185 (1943).Google Scholar
  13. 13).
    Loehwing, W. F., Root interactions of plants. Botan. Revs.3, 195 (1937).Google Scholar
  14. 14).
    Lundegårdh, H. and Stenlid, G., On the exudation of nucleotides and flavonones from living roots. Arkiv. Botanik31 A, 1 (1944).Google Scholar
  15. 15).
    Lyon, T. L. and Wilson, P. K., Liberation of organic matter by roots of growing plants. Cornell Univ. Agr. Expt. Sta. Mem.40, 1 (1921).Google Scholar
  16. 16).
    Melin, E., Growth factor requirements of mycorrhizal fungi of forest trees. Svensk Botan. Tidskr.48, 86 (1954).Google Scholar
  17. 17).
    Melin, E. and Rama Das, V. S., Influence of root metabolites on the growth of tree mycorrhizal fungi. Physiol. Plantarum7, 851 (1954).Google Scholar
  18. 18).
    Nutman, P. S., Colour reactions between clay minerals and root secretions. Nature167, 288 (1951).PubMedGoogle Scholar
  19. 19).
    O'Brien, D. G. and Prentice, E. G., An eelworm disease of potatoes caused byHeterodera schachtü. Scot. J. Agr.13, 415 (1930).Google Scholar
  20. 20).
    Osvald, H., Toxic exudates from the roots ofAgropyron repens. J. Ecol.36, 193 (1948).Google Scholar
  21. 21).
    Partridge, S. M., Aniline hydrogen phthalate as a spraying reagent for sugars. Nature164, 443 (1949).Google Scholar
  22. 22).
    Roberts, E. A., The epidermal cells of roots. Bot. Gazette62, 488 (1916).Google Scholar
  23. 23).
    Rogers, H. T., Pearson, R. W. and Pierre, W. H., The source and phosphatase activity of exoenzyme systems of corn and tomato roots. Soil Sci.54, 353 (1942).Google Scholar
  24. 24).
    Roux, E. R., The effect of antibiotics produced byTrachypogon plumosus on the germination of seeds of Kakiebos (Tagetes minuta). S. Afr. J. Sci.49, 334 (1953).Google Scholar
  25. 25).
    Rovira, A. D., Some quantitative and qualitative aspects of the rhizosphere. Proc. Soil Sci. Conf. Adelaide, June 1953 (1953).Google Scholar
  26. 26).
    Stenlid, G., Exudation of excised pea roots as influenced by inorganic ions. Ann. Roy. Agr. Coll. Sweden14, 301 (1947).Google Scholar
  27. 27).
    Tamm, E. and Schendel, U., Loss of nitrogen from legume roots. Z. Pflanzenernähr. Düng. u. Bodenk.64, 147 (1954).Google Scholar
  28. 28).
    Timonin, M. I., The interaction of higher plants and soil micro-organisms: III. Effect of byproducts of plant growth on the activity of fungi and actinomycetes. Soil Sci.52, 395 (1941).Google Scholar
  29. 29).
    Virtanen, A. I., Berg, A. M. and Kari, S., Formation of homoserine in germinating pea seeds. Acta Chem. Scand.7, 1423 (1953).Google Scholar
  30. 30).
    Virtanen, A. I. and Laine, T., Chemical nature of the amino acids excreted by leguminous root nodules. Nature136, 756 (1935).Google Scholar
  31. 31).
    Wallace, R. H. and King, H. de L., Nutritional groups of soil bacteria on the roots of barley and oats. Soil Sci. Soc. Amer. Proc.18, 282 (1954).Google Scholar
  32. 32).
    Wallace, R. H. and Lochhead, A. G., Qualitative studies of soil micro-organisms IX: Amino acid requirements of rhizosphere bacteria. Can. J. Research C28, 1 (1950).Google Scholar
  33. 33).
    West, P. M., Excretion of biotin and thiamin by roots of higher plants. Nature144, 1050 (1939).Google Scholar
  34. 34).
    Wilson, P. W., The biochemistry of symbiotic nitrogen fixation. Univ. of Wisconsin Press, Madison (1940).Google Scholar

Copyright information

© Martinus Nijhoff 1956

Authors and Affiliations

  • A. D. Rovira
    • 1
  1. 1.Institute of MicrobiologyUppsalaSweden

Personalised recommendations