Plant and Soil

, Volume 7, Issue 1, pp 49–95 | Cite as

The uptake of nutrients by mature forest growth

  • Peter J. Rennie


The extremely low nutrient-status of various recently afforested moor soils, particularly Yorkshire (England)Calluna soils, raised the question of their ability to provide the possible nutrient-demands of continuous forest growth. This paper describes how, for calcium, potassium and phosphorus, uptake estimates have been calculated from existing nutrient-composition data, and discusses the silvicultural significance of such estimates, particularly in relation to nutrient-poor soils.

All existing nutrient-composition data for whole individual mature temperate forest trees are summarized: using yield-data and a method of calculation critically discussed, they are made to provide nutrient-uptake estimates for one acre of such forest after periods of 50 and 100 years' growth. Mean estimates representing “hardwood,” “other conifer” and “pine” forest are then calculated showing: — the nutrients removed from the site via the various components of the timber-thinnings and clear-fellings, the nutrients taken up and immobilized within the various component organs of the growing forest, and the total nutrient-uptake from the site.

The estimates show that timber exploited forest, by reason of its unavoidable continuous nutrient-removal from the site, differs fundamentally from unexploited virgin forest; in absolute terms this removal may be small, but its pedological and silvicultural importance upon any particular site, depends entirely upon the ability of the soil to replenish this loss. It is believed that up to now the failure to recognize this nutrient-removal upon nutrient-poor soils has diverted attention from an important factor initiating both soil-degradation and diminishing site-productivity.

Soil nutrient-data presented show that the nutrient-uptakes of timber-producing forest of either confierous or hardwood species are so large compared with the nutrient-contents of moor soils that further overall soil-degradation and, sooner or later, diminished site-productivity are inevitable.

Upon such soils, therefore, continuous timber production cannot be sustained by ploughing or by the growth of hardwoods alone; new silvicultural techniques are needed which can restore to the site, by means of suitable soil-ameliorants and methods yet to be evolved, the nutrients continually being removed via the timber.

The paucity of knowledge concerning both the nutrient-demands of common tree species and the nutrient-status of the nutrient-poor soils upon which they are being extensively planted calls for an expansion of research upon these aspects if timber-production in this country is to be placed on a scientific, and not speculative, basis.


Tree Species Timber Forest Tree Component Organ Absolute Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1).
    Aaltonen, V. T., The characteristics of podzols. Commun. Inst. For. Fenn.27, 1–133 (1939).Google Scholar
  2. 2).
    Aaltonen, V. T., Die Blattanalyse als Bonitierungsgrundlage des Waldbodens. Comm. Inst. For. Fenn.37 (8) (1950).Google Scholar
  3. 3).
    Alten, F. and Doehring, W., Fertilizers in forest management. Z. Pflanzenernähr. Düng. u. Bodenk.59, 145–7 (1952).Google Scholar
  4. 4).
    Anderson, M. S. and Byers, H. C., Character of the colloidal materials in the profiles of certain major soil groups. U.S. Dept. Agr. Tech. Bull. No. 228 (1931).Google Scholar
  5. 5).
    Anon., The results of manuring trials with basic slag (and natural phosphatic chalk) on spruce during a period of 44 years at Sart-lez-Spa. Belgium. Service Agronomiques des Producteurs Belges et Luxembourgeois de Phosphate. 47 Cantersteen, Brussels (1953).Google Scholar
  6. 6).
    Arnon, D. I., Mineral nutrition of plants. Ann. Rev. Biochem.12, 499 (1943).Google Scholar
  7. 7).
    Bartholomew, W. V., Meyer, J. and Laudelout, H., Mineral nutrient immobilization under forest and grass fallow in the Yangambi (Belgian Congo) Region. Publ. Inst. Nat. Étude Agron. Congo Belge, Serie sci. No. 57, 27 pp. (1953).Google Scholar
  8. 8).
    Becker-Dillingen, J., Die Ernährung des Waldes. Handbuch der Forstdüngung, Berlin (1939).Google Scholar
  9. 9).
    Biswas, T. D., Distribution of manganese in profiles of some Indian soils. J. Indian Soc. Soil. Sci.1, 21–31 (1953).Google Scholar
  10. 10).
    Boresch, K., The mineral content of plants. Tabul. biol., Hague12 (4), 136–191; 315–353 (1936).Google Scholar
  11. 11).
    Burger, H., Experiments on soil improvement. III. Mitt. schweiz. Zentr. Anst. forstl. Versuchsw.28, 11–87 (1952).Google Scholar
  12. 12).
    Burges, A. and Drover, D. P., The rate of podzol development in sands of the Woy Woy District, N.S.W. Australian J. Botany1, 83–94 (1953).Google Scholar
  13. 13).
    Cain, J. C., The absorption and distribution of mineral nutrients in apple trees as affected by nutrient supply. Am. Soc. Hort. Sci. Proc.62, 53–66 (1953).Google Scholar
  14. 14).
    Camp, A. F. and Peech, M., Manganese deficiency in citrus in Florida. Am. Soc. Hort. Sci. Proc.36, 81–85 (1938).Google Scholar
  15. 15).
    Clarke, F. W., The Data of Geochemistry. U.S. Geol. Survey Bull. No. 770, 841 pp. Washington (1924).Google Scholar
  16. 16).
    Councler, C., Über den Gehalt dreier auf gleichem Boden erwachsener Nadelbäume, Tanne, Fichte und Lärche, an Trockensubstanz, Stickstoff und Mineralstoffen. Z. Forst- u. Jagdw.18, 353–375, 417–441 (1886).Google Scholar
  17. 17).
    Dimbleby, G. W., The historical status of moorland in North-East Yorkshire. New Phytologist51, 349–354 (1952).Google Scholar
  18. 18).
    Dimbleby, G. W., Soil regeneration on the North-East Yorkshire moors. J. Ecol.40, 331–341 (1952).Google Scholar
  19. 19).
    Ebermayer, E., Die gesammte Lehre der Waldstreu mit Rücksicht auf die chemische Statik des Waldbaues (p. 112). J. Springer, Berlin (1876).Google Scholar
  20. 20).
    Erteld, W., Wachstum und Ertrag der Robinie im Gebiet der Deutschen Demokratischen Republik. Dissertation, Eberswalde (1952).Google Scholar
  21. 21).
    Gardner, R. A. and Bradshaw, K. E., Characteristics and vegetation relationships of some podzolic soils near the coast of N. California. Soil Sci. Soc. Amer. Proc.18, 320–325 (1954).Google Scholar
  22. 22).
    Gaumann, E., Der Stoffhaushalt der Buche (Fagus silvatica, L.) im Laufe eines Jahres. Ber. schweiz. botan. Ges.44, 157–334 (1935).Google Scholar
  23. 23).
    Gaussen, R. H., Bericht über einige Kalkungsversuche in den Forstämtern Altenbecken und Neuenheerse. Forstarchiv14, 73–84 (1938).Google Scholar
  24. 24).
    Grandeau, L., Le sol des landes et des dunes et la végétation du pin maritime. Ann. Sta. Agron. de l'Est 1878, 353–369 (1878).Google Scholar
  25. 25).
    Grandeau, L. and Fliche, P., De l'influence de la composition chimique du sol sur la végétation du pin maritime (Pinus pinaster, Soland). Ann. Sta. Agron. de l'Est 1878, 3–39 (1878).Google Scholar
  26. 26).
    Henry, E., Étude chimique sur les essences principales de la forêt de Haye et sur leurs cendres. Ann. Sta. Agron. de l'Est 1878, 117–144 (1878).Google Scholar
  27. 27).
    Heyer, G. and Vonhausen, Ann. Chem. Pharm.82, 180 (1852) (only the abstract in Wolff, 1871, seen).Google Scholar
  28. 28).
    Jacks, G. V., A study of some Yorkshire moorland soils. Forestry6, 27–39 (1932).Google Scholar
  29. 29).
    Kalela, E. K., On the horizontal roots in pine and spruce stands. I. Acta For. Fenn.57 (2), 1–79 (1949).Google Scholar
  30. 30).
    Kellogg, C. E. and Nygard, I. J., The principal soil groups of Alaska. U.S. Dept. Agr., Agr. Monograph No. 7 (1951).Google Scholar
  31. 31).
    Köhler, A., The comparative success of conifer plantations in a forest range in N. Hesse. Allgem. Forst- u. Jagdztg.124, 215–8 (1953).Google Scholar
  32. 32).
    Leiningen, W., Forstwirtschaftliche Bodenbearbeitung, Düngung, und Einwirkung der Waldvegetation auf den Boden. Blanck's Handbuch der Bodenlehre9, 348–496 (1931).Google Scholar
  33. 33).
    Lohwasser, W., Kalkdüngungsversuche im Eggegebirge und Hunsrück, Ertragskundliche Untersuchungen. Forstarchiv24, 213–22 (1953).Google Scholar
  34. 34).
    Lunt, H. A., Profile characteristics of New England forest soils. Connecticut Agr. Exp. Sta. Bull. No. 342 (1932).Google Scholar
  35. 35).
    Lutz, H. J. and Chandler, R. F., Forest Soils. J. Wiley, New York (1946).Google Scholar
  36. 36).
    Lyford, W. H., The palatability of freshly fallen forest tree leaves to Millepeds. Ecology24, 252–261 (1943).Google Scholar
  37. 37).
    Molchanov, A. A., The reserves of needles in pine trees in timber stands of different ages. Doklady Akad. Nauk. SSR.67, 909–12 (1949) (U.S. Forest Service Translation No. 374, Dept. Agriculture, Washington).Google Scholar
  38. 38).
    Müller, P. E., Forest soil studies; A contribution to silvicultural theory. Tidsskr. Skovbrug Copenhagen3, 1 (1879).Google Scholar
  39. 39).
    Müller, P. E., Forest soil studies: On mull and mor in oak-forests and on heaths with some physical and chemical investigations of forest and health soils by C. F. A. Tuxen. Tidsskr. Skovbrug Copenhagen7, 1 (1884).Google Scholar
  40. 40).
    Muir, A., The soils of the Teindland state forest. Forestry8, 25–55 (1934).Google Scholar
  41. 41).
    Muir, A. and Fraser, G. K., The soils and vegetation of the Bin and Clashindarroch forests. Trans. Roy. Soc. Edinburgh60 Part I, 233–341 (1940).Google Scholar
  42. 42).
    Murphy, P. W., The biology of forest soils with special reference to the mesofauna or meiofauna. J. Soil Sic.4, 155–193 (1953).Google Scholar
  43. 43).
    Nemec, A., The biochemistry of forest-trees, chemical composition of organs. Publikace Ministersiva Zemedelstvi R.O.S. No. 120, Prague (1948).Google Scholar
  44. 44).
    Nemec, A., Types of forest soils, (The amelioration of podzols). Statni Zemedelske Nakladatelstvi, Prague (1954).Google Scholar
  45. 45).
    Nielson, R. L., Effect of soil minerals on earthworms. New Zealand J. Agr.83, 433–5 (1951).Google Scholar
  46. 46).
    Ogg, W. G., The Soils of Scotland, Part II, The north-eastern region. Emp. J. Exp. Agr.3, 248–260 (1935).Google Scholar
  47. 47).
    Ogg, W. G., The Soils of Scotland, Part III, The central valley and southern uplands. Emp. J. Exp. Agr.3, 295–312 (1935).Google Scholar
  48. 48).
    Ovington, J. D., Studies of the development of woodland conditions under different trees. I. Soils pH. J. Ecol.41, 13–34 (1953).Google Scholar
  49. 49).
    Peech, M. and Young, T. W., Chemical Studies on soils from Florida citrus groves. Florida Agr. Exp. Sta. Bull. No. 448, 6–84 (1948).Google Scholar
  50. 50).
    Ramann, E, Beiträge zur Statik des Waldbaues I Die Kiefer. Z. Forst-u. Jagdw.13, 417–433 (1881).Google Scholar
  51. 51).
    Ramann, E., Beiträge zur Statik des Waldbaues. 5. Die wilde Acazie (Robinia pseudo-acacia, L.). Z. Forst- u. Jagdw.15, 90–99 (1883).Google Scholar
  52. 52).
    Ramann, E. and Will, H., Beiträge zur Statik des Waldbaues. 2. Die Schwarzerle (Alnus glutinosa, Gaert.). Z. Forst- u. Jagdw.14, 54–64 (1882).Google Scholar
  53. 53).
    Ramann, E. and Will, H., Beiträge zur Statik des Waldbaues. 3. Die Weymouthskiefer (Pinus strobus, L.). Z. Forst- u. Jagdw.14, 350–358 (1882).Google Scholar
  54. 54).
    Ramann, E. and Will, H., Beiträge zur Statik des Waldbaues. 4. Die Hainbuche (Carpinus betulus, L.). Z. Forst- u. Jagdw.14, 497–504 (1882).Google Scholar
  55. 55).
    Ramann, E. and Will, H., Beiträge zur Statik des Waldbaues. 6. Die Esche (Fraxinus excelsior, L.). Z. Forst- u. Jagdw.15, 244–251 (1883).Google Scholar
  56. 56).
    Rennie, P. J., Unpublished data (1954).Google Scholar
  57. 57).
    Rode, A. A. in Joffe, J. S., Pedology. Rutgers Univ. Press, New Brunswick U.S.A. (1949).Google Scholar
  58. 58).
    Romell, L. G., Tree growth on acid soil. Nature (London)174, 855–7 (1954).Google Scholar
  59. 59).
    Russell, E. W., Soil Conditions and Plant Growth. Longmans, Green, London (1950).Google Scholar
  60. 60).
    Salisbury, E. J., Note on the edaphic succession in some dune soils with special reference to the time factor. J. Ecol.13, 322–8 (1925).Google Scholar
  61. 61).
    Schneider, B., Experience with liming and green-manuring on podzolised forest soils. Forstarchiv23, 153–8 (1952).Google Scholar
  62. 62).
    Schröder, J., Untersuchung der chemischen Constitution des Frühjahrsfastes der Birke, ein Preisschrift. Arch. Naturk. Liv-, Esth- u. Kurlands. Ser. 2.7, 1 (1865) (only the abstract in Wolff, 1871, seen).Google Scholar
  63. 63).
    Schröder, J., Zur Kenntniss des Mineralstoffgehaltes der Fichte. Tharandt forstl. Jahrb.24, 257–277 (1874).Google Scholar
  64. 64).
    Schröder, J., Forstchemische u. pflanzenphysiologische Untersuchungen, I, K. Schönfeld. Dresden (1878).Google Scholar
  65. 65).
    Schwappach, Ertragstafeln der wichtigeren Holzarten. J. Neumann, Neudamm (1912).Google Scholar
  66. 66).
    Simonart, P. and Huygh, A., The microbiological determination of copper in Campine soils. Agricultura (Louvain)1, 52–75 (1953).Google Scholar
  67. 67).
    Stewart, A. B., The genesis and development of two profiles in a drift soil in North-East Scotland. J. Agr. Sci.23, 73–96 (1933).Google Scholar
  68. 68).
    Tamm, O., Northern Coniferous Forest Soils (translated from the Swedish by M. L. Anderson). The Scrivener Press, Oxford (1950).Google Scholar
  69. 69).
    Tasselli, E., Ricerche chimico-forestali sulla Quercia Sughero. Staz. sper. agrar. ital.32, 209–32 (1899).Google Scholar
  70. 70).
    Vanselow, K., Krone und Zuwachs der Fichte in gleichaltrigen Reinbeständen. Forst-wiss. Cbl.70, 705–719 (1951).Google Scholar
  71. 71).
    Vincent, G. and Spalek, V., Poplars, their silviculture, timber properties and yield. Lesn. Knivhovna (mala Rada) No. 35, Prague (1954).Google Scholar
  72. 72).
    Viro, P. J., Fertilization trials on forest soil. Comm. Inst. For. Fenn.37 (7), 23 pp. (1950).Google Scholar
  73. 73).
    Viro, P. J., Nutrient status and fertility of forest soil. I. Pine stands. Commun. Inst. For. Fenn.39 (4), 1–54 (1951).Google Scholar
  74. 74).
    Warington, R., The Chemistry of the Farm, 9th edn. Vinton, London (1886).Google Scholar
  75. 75).
    Weber, R., Forstliche Blätter, 257 (only the abstract in Wolff, 1880 seen) (1876).Google Scholar
  76. 76).
    Weber, R., Vergleichende Untersuchungen über die Ausprüche der Weisstanne und Fichte an die mineralischen Nährstoffe der Bodens. Allgem. Forst- u. Jagdztg.57, 1–10 (1881).Google Scholar
  77. 77).
    Weber, R., Aschenanalysen von Holz und Rinden der Lärche, Weymouthskiefer Espe und Hainbuche. Forstlich-naturwiss. Zeitschr.2, 209–19 (1893).Google Scholar
  78. 78).
    Wiedemann, E., Ertragstafeln der wichtigeren Holzarten. M. & H. Schaper, Hannover (1949).Google Scholar
  79. 79).
    Wilde, S. A., Forest Soils and Forest Growth. Chronica Botanica, Waltham, Mass. U.S.A. (1946).Google Scholar
  80. 80.
    Will, H., Untersuchungen über das Verhältniss von Trockensubstanz und Mineralstoffgehalt im Baumkörper. Z. Forst- u. Jagdw.14, 209–225; 264–280 (1882).Google Scholar
  81. 81).
    Wittstein, Henneberg. J. Landwirtsch. 1855 Jahresber. (only the abstract in Wolff, 1871, seen) (1855).Google Scholar
  82. 82).
    Wolff, E., The ash-analyses of agricultural and forestry products I and II. Wiegandt, Hempel and Parey, Berlin (1871 and 1880).Google Scholar
  83. 83).
    Wright, T. W., Effect of tree growth on soil profile development. Report on Forest Research for the year ending 1953, Forestry Commission, H.M.S.O., pp. 103–5 (1954).Google Scholar

Copyright information

© Martinus Nijhoff 1956

Authors and Affiliations

  • Peter J. Rennie
    • 1
  1. 1.Department of Forestry, Imperial Forestry InstituteUniversity of OxfordUK

Personalised recommendations