Plant and Soil

, Volume 6, Issue 2, pp 174–200 | Cite as

A preliminary study of aluminium and the tea bush

  • E. M. Chenery


The phenomenon of uptake of aluminium by the tea bush has been examined in relation to its constancy as a characteristic feature, age of leaf and tree, genetic constitution, resistance to certain diseases, distribution within the plant, interactions with manganese and phosphorus, soil, essentiality and finally in relation to other aluminium-plants.

Strong aluminium absorption appears to be a constant feature for all healthy bushes of any age, the element is stored in the oldest leaves but it does not impart any resistance to “blister blight” but it occurs to a greater extent than normal in flushes with “tea yellows”; it is gene-controlled, there being three distinct levels of accumulation corresponding with the three major divisions of the species. The presence of abundant available aluminium in the soil will not prevent excessive uptake of managanese accompanied by severe leaf scorch and spotting in bright light. Aluminium tends to diminish leaf phosphorus while manganese tends to increase it. Large amounts of available soil manganese may induce greater uptake of aluminium andvice versa. Small quantities of aluminium within tea leaves are associated with degree of greenness, but the large accumulations probably do not serve any useful purpose. Exchangeable soil aluminium may stimulate roots, particularly tap-roots or root-stocks. The tea bush may be a relict plant like so many of other aluminium accumulators.


Manganese Aluminium Absorption Bright Light Genetic Constitution Distinct Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Airy-Shaw, H. K.Symplococarpon hintoni (Bullock) Airy-Shaw. Icones Plantarum t3342 (1937).Google Scholar
  2. 2).
    Bertrand, G. et Levy, G., La teneur des plantes, notamment des plantes alimentaires en aluminium. Compt. Rend. Acad. Sci. Paris192, 525 (1931).Google Scholar
  3. 3).
    Chenery, E. M., The problem of the blue hydrangea. J. Roy. Hort. Soc.62, 304 (1937).Google Scholar
  4. 4).
    Chenery, E. M., Aluminium in the plant world, part I, general survey in dicotyledons. Kew Bulletin, 173 (1948).Google Scholar
  5. 5).
    Chenery, E. M., Aluminium in plants and its relation to plant pigments. Ann. Botany N.S.12, 121 (1948).Google Scholar
  6. 6).
    Chenery, E. M., Aluminium in the plant world, parts II and III, monocotyledons, gymnosperms and cryptogams. Kew Bulletin, 463 (1949).Google Scholar
  7. 7).
    Chenery, E. M., Contributions to the biogeochemistry of aluminium 1948–50. Colonial Office Mimeograph C. 0/1529/51 (1951).Google Scholar
  8. 8).
    Child, R., Tea and soil acidity. Tea Research Inst. E. Africa Ann. Rept.23 (1951).Google Scholar
  9. 9).
    Child, R., The selection of soils suitable for tea. Tea Research Inst. E. Africa, Pam. 5, 6 (1952).Google Scholar
  10. 10).
    Eden, T., Private communication, 1949.Google Scholar
  11. 11).
    Eden, T. and Gadd, C. H., Reports of agricultural chemist and plant pathologist for 1931. Tea Research Inst. Ceylon Bull8, 37 (1932).Google Scholar
  12. 12).
    Editorial, Expansion of plant systematics. Nature158, 535 (1946).Google Scholar
  13. 13).
    von Faber, F. C., Die Kraterpflanzen Javas in physiologisch-ökologischer Beziehung. Arbt. Treub-Laboratorium, Buitenzorg1, 1 (1927).Google Scholar
  14. 14).
    von Faber, F. C., Untersuchungen über die Physiologie der javanischen Solfataren-Pflanzen. Flora118, 89 (1925).Google Scholar
  15. 15).
    Hallier, H., Beiträge zur Kenntnis derLinaceae (DC. 1819) Dumort. Botan. Zentralblatt. Beih.39, 128 (1922).Google Scholar
  16. 16).
    Heslep, J. M., A study of the infertility of two acid soils. Soil Sci.72, 67 (1951).Google Scholar
  17. 17).
    Hutchinson, G. E., The biogeochemistry of aluminium and of certain related elements. Quart. Rev. Biol.18, 1 (1943).Google Scholar
  18. 18).
    Kingdon-Ward, F., Does wild tea exist? Nature165, 297 (1950).Google Scholar
  19. 19).
    Lamb, J., Private communication, 1952.Google Scholar
  20. 20).
    Liebig, G. F., Vanselow, A. P. and Chapman, H. D., Effects of aluminium on copper toxicity as revealed by solution-culture and spectrographic studies of citrus. Soil Sci.53, 341 (1942).Google Scholar
  21. 21).
    Lipman, C. B., Importance of silicon, aluminium and chlorine for higher plants. Soil Sci.45, 189 (1938).Google Scholar
  22. 22).
    McMurtrey, J. E. and Robinson, W. O., Neglected soil constituents that affect plant and animal development. Soils and Men, U.S.D.A. Yearbook, 813 (1938).Google Scholar
  23. 23).
    Neger, F. W., Neue Methoden und Ergebnisse der Microchemie der Pflanzen. Flora116, 323 (1923).Google Scholar
  24. 24).
    Parfenova, E. I. and Troitskii, A. I., Possible causes of a failure of tea bushes. Pochvovedenie, 322 (1951). (Translation by Bureau Inter-africain des Sols, Paris).Google Scholar
  25. 25).
    Pierre, W. H., Hydrogen ion concentration, aluminium concentration in the soil solution and percentage base saturation as factors affecting plant growth on acid soils. Soil Sci.31, 183 (1931).Google Scholar
  26. 26).
    Polynov, B. B., The red crust of weathering and its soils. Pochvovedenie 7 (1944).Google Scholar
  27. 27).
    Polynov, B. B., Leading ideas of the contemporary study of soil formation and development. Pochvovedenie, 3 (1948). (Refs. 26, 27, translated by Commonwealth Bureau of Soil Science).Google Scholar
  28. 28).
    Robinson, W. O., The agricultural significance of the minor elements. Am. Fertilizer89, No. 8, 9 (1938). (for private communication by K. C. Hou).Google Scholar
  29. 29).
    Sealy, J. R., Private communication (1953).Google Scholar
  30. 30).
    Small, J., pH and plants. Bailliere Tindall and Cox, London, 1946.Google Scholar
  31. 31).
    Small, J. and Jackson, T., Relative buffer-index values for root saps of some crop plants. J. Agr. Sci.38, 343 (1948).Google Scholar
  32. 32).
    Sommer, A. L., Studies concerning the essential nature of aluminium and silicon for plant growth. Univ. Calif. Publs. Agr. Sci.5, 57 (1926).Google Scholar
  33. 33).
    Stoklasa, J., Über die Verbreitung des Aluminiums in der Natur. Jena, G. Fischer, 1922.Google Scholar
  34. 34).
    Storey, H. H. and Leach, R., A sulphur-deficiency disease of the tea bush. Ann. Applied Biol.20, 23 (1933).Google Scholar
  35. 35).
    Tauböck, K., Über die Lebensnotwendigkeit des Aluminiums für Pteridophyten. Botan. Arch43, 219 (1942). (Translation by Bureau Inter-africain des Sols, Paris).Google Scholar
  36. 36).
    Tubbs, F. R., Manganese in tea. Tea Research Inst. Ceylon Ann. Rept. 1933. Bull. 11, 36 (1934).Google Scholar
  37. 37).
    Yoshii, Y., Some experiments on the action of aluminium on plants. Sci. Rept. Tôhoku Imp. Univ. (ser. 4),3, 547 (1928).Google Scholar
  38. 38).
    Yoshii, Y. und Jimbo, T., Mikrochemischer Nachweis von Aluminium und sein Vorkommen im Pflanzenreiche. Sci. Rep. Tôhoku Imp. Univ. (ser. 4),7, 65 (1932).Google Scholar

Copyright information

© Martinus Nijhoff 1955

Authors and Affiliations

  • E. M. Chenery
    • 1
  1. 1.Kawanda Research StationKampalaUganda, B.E.A.

Personalised recommendations