Journal of comparative physiology

, Volume 126, Issue 1, pp 25–33 | Cite as

The auditory pathway in the ventral cord of the migratory locust (Locusta migratoria): Response transmission in the axons

  • Klaus Kalmring
  • Roland Kühne
  • Fritz Moysich


Auditory neurons ascending to the supraesophageal ganglion from the ventral cord of the migratory locust,Locusta migratoria, were examined for alterations in the spike response during conduction in the axons. In each experiment the responses of a given neuron were recorded, with glass microcapillaries, in succession at different stations in the central nervous system. The responses were evaluated and compared by computer analysis.
  1. 1.

    The impulses in the auditory ventral-cord neurons pass unchanged along the main axon trunk, from the mesothoracic ganglion to the supraesophageal ganglion. Neither temporal pattern nor magnitude (impulses/stimulus) of the response is altered.

  2. 2.

    The responses of neurons of a given type are the same on the left and right sides of an animal.

  3. 3.

    The head ganglia exert no influence upon the response or its conduction in the G, B and C neurons.

  4. 4.

    At the points where the axons branch, various time-dependent “filtering processes” can appear, which cause the activity conducted in the side branches to differ from that in the axon trunk.



Nervous System Central Nervous System Temporal Pattern Computer Analysis Side Branch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bauer, A.: Morphologische Darstellung der axonalen Endverzweigungen akustischer Bauchmarkneurone in den Kopfganglien vonLocusta migratoria. Diplomarbeit, Bochum 1977Google Scholar
  2. Chung, S.-H., Raymond, S.A., Lettrin, J.Y.: Multiple meaning in single visual units. Brain Behav. Evol.3, 72–101 (1970)Google Scholar
  3. Chung, S.-H.: Intermittent nerve conduction. Nature264, 313–314 (1976)Google Scholar
  4. Čokl, A., Kalmring, K., Wittig, H.: The responses of auditory ventral-cord neurons ofLocusta migratoria to vibration stimuli. J. comp. Physiol.120, 161–172 (1977)Google Scholar
  5. Essen, D.C. van: The contribution of membrane hyperpolarization to adaptation and conduction block in sensory neurons of the leech. J. Physiol.230, 509–534 (1973)Google Scholar
  6. Goldstein, S., Rall, W.: Changes of action potential shape and velocity for changing core conducted geometry. Biophys. J.14, 731–757 (1974)Google Scholar
  7. Hatt, H., Smith, D.O.: Synaptic depression related to presynaptic axon conduction block, J. Physiol.259, 367–393 (1976)Google Scholar
  8. Kalmring, K.: The afferent auditory pathway in the ventral cord ofLocusta migratoria (Acrididae). I. Synaptic connectivity and information processing among the auditory neurons of the ventral cord. J. comp. Physiol.104, 103–141 (1975)Google Scholar
  9. McKay, J.M.: Central control of an insect sensory interneurone. J. exp. Biol.53, 137–145 (1970)Google Scholar
  10. Murray, M.J.: Fibre groups in the auditory nerve of the Locust. Nature (Lond.)218, 95–96 (1968)Google Scholar
  11. O'Shea, M., Rowell, C.H.F., Williams, J.L.D.: The anatomy of a locust visual interneurone; the descending contralateral movement detector. J. exp. Biol.60, 1–12 (1974)Google Scholar
  12. Parnas, I., Hochstein, S., Parnas, H.: Theoretical analysis of parameters leading to frequency modulation alonge an inhomogeneous axon. J. Neurophysiol.39, 909–923 (1976)Google Scholar
  13. Rehbein, H.G.: Auditory neurons in the ventral cord of the locust: Morphological and functional properties. J. comp. Physiol.110, 233–250 (1976)Google Scholar
  14. Römer, H.: Die Informationsübertragung tympanaler Rezeptorelemente vonLocusta migratoria (Acrididae, Orthoptera). J. comp. Physiol.109, 101–122 (1976)Google Scholar
  15. Rowell, C.H.F., McKay, J.M.: An acridid interneurone. II. Habituation, variation in response level and central control. J. exp. Biol.51, 247–260 (1969)Google Scholar
  16. Spira, M.E., Yarom, Y., Parnas, I.: Modulation of spike frequency by regions of special axonal geometry and by synaptic inputs. J. Neurophysiol.39, 882–899 (1976)Google Scholar
  17. Waxman, S.G.: Regional differentiation of the axon: a review with special reference to the concept of the multiplex neuron. Brain Res.47, 269–288 (1972)Google Scholar
  18. Yau, K.-W.: Physiological properties and receptive fields of mechanosensory neurones in the head ganglion of the leech: comparison with homologous cells in segmental ganglia. J. Physiol.263, 489–512 (1976a)Google Scholar
  19. Yau, K.-W.: Receptive fields, geometry and conduction block of sensory neurones in the central nervous system of the leech. J. Physiol.263, 513–538 (1976b)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Klaus Kalmring
    • 1
  • Roland Kühne
    • 1
  • Fritz Moysich
    • 1
  1. 1.Lehrstuhl für Allgemeine ZoologieRuhr-UniversitätBochumFederal Republic of Germany

Personalised recommendations