Advertisement

Journal of Statistical Physics

, Volume 29, Issue 3, pp 401–425 | Cite as

Commensurate-incommensurate phase transitions in one-dimensional chains

  • Ya. G. Sinai
Articles

Abstract

We consider one-dimensional systems of classical particles whose potential energy has the form:
$$W_{\alpha ,\gamma } = \sum {[\alpha V(x_n )} + F(x_n - x_{n - 1} C\gamma )]$$
The limit of the Gibbs state as T→0 is described in terms of invariant measures of two-dimensional mappings which are constructed with the help ofWα, γ. The dependence of these measures on parametersα, γ is investigated.

Key words

Gibbs state homoclinic point invariant pressure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. I. Frenkel and T. Kontorova,Zh. Exsp. Teor. Fiz. (1938).Google Scholar
  2. 2.
    F. C. Frank and J. H. Van der Merwe,Proc. R. Soc. London 198, 205, 216 (1949).Google Scholar
  3. 3.
    V. L. Pokrovsky,Solid State Commun.,26, 77 (1978).Google Scholar
  4. 4.
    V. L. Pokrovsky,J. de Phys. (Paris) 42, 761 (1981).Google Scholar
  5. 5.
    V. L. Pokrovsky and A. L. Talapov,Zh. Exsp. Teor. Fiz. 75, 1151 (1978)Google Scholar
  6. 6.
    S. Aubry, inSolitons and Condensed Matter Physics, A. R. Bishop and T. Schneider, eds. Springer, Heidelberg, 1979, p. 264.Google Scholar
  7. 7.
    S. Aubry,Ferroelectrics 53, 24 (1980).Google Scholar
  8. 8.
    P. Bak and J. von Boehm,Phys. Rev. Lett. 42, 122 (1979).Google Scholar
  9. 9.
    A. N. Filonov and G. M. Zaslavsky,Phys. Lett. 86A, 237 (1981).Google Scholar
  10. 10.
    R. L. Dobrushin and E. A. Pecherski, inRandom Fields, J. Fritz, J. L. Lebowitz, and D. Szasz, eds. North-Holland, Amsterdam, 1981, p. 223.Google Scholar
  11. 11.
    Z. Nitecki,Differential Dynamics (MIT Press, Cambridge, Massachusetts, 1971).Google Scholar
  12. 12.
    V. K. Melnikov, Proceedings Moscow Mathematical Society, Vol. 12, 1963, p. 3.Google Scholar
  13. 13.
    V. I. Arnold,Mathematical Methods of Classical Mechanics (Nauka, Moscow, 1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Ya. G. Sinai
    • 1
  1. 1.L. D. Landau Institute of Theoretical PhysicsAcademy of SciencesMoscowUSSR

Personalised recommendations