Rheologica Acta

, Volume 29, Issue 4, pp 342–351 | Cite as

A numerical comparison of two decoupled methods for the simulation of viscoelastic fluid flows

  • M. El Hadj
  • P. A. Tanguy
  • A. Fortin
Original Contributions

Abstract

Two decoupled methods for the finite element solution of the planar stick-slip transition problem with Oldroyd-B fluids, namely the method of characteristics and the Lesaint-Raviart technique, are presented and compared. These procedures are used for the local treatment of the stress transport equation imbedded in the constitutive law and allow the approximation of stresses with discontinuous shape functions. Computations are carried out up to a Deborah number of 4 and the methods are shown to yield fairly similar results.

Key words

Oldroyd-B fluids die flows stick-slip problem finite element method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apelian MR, Armstrong CR, Brown RA (1988) J Non-Newt Fluid Mech 27:299Google Scholar
  2. 2.
    Keunings R (1989) In: Tucker CL III (ed) Fundamentals of Computer Modelling for Polymer Processing. HanserGoogle Scholar
  3. 3.
    Keunings R, Crochet MJ (1984) J Non-Newt. Fluid Mech 14:279Google Scholar
  4. 4.
    Marchal JM, Crochet MJ (1987) J Non-Newt Fluid Mech 26:77Google Scholar
  5. 5.
    Crochet MJ (1988) Proc 10th of Rheology, Sydney 1:19Google Scholar
  6. 6.
    Brown RA, King RC, Apelian MR, Armstrong RC (1988) Proc 10th of Rheology, Sydney 1:210Google Scholar
  7. 7.
    El Hadj M, Tanguy PA, A finite element procedure for viscoelastic fluid flow using the method of characteristics. J Non-Newt Fluid Mech, in pressGoogle Scholar
  8. 8.
    Fortin M, Esselaoui D (1987) Int J Numer Meth Fluids 7:1035Google Scholar
  9. 9.
    Fortin M, Fortin A (1989) J Non-Newt Fluid Mech 32:295Google Scholar
  10. 10.
    Benque JP, Labadie G, Ronat J (1982) Proc 4th Int Symp in Finite Elements and Flow Problems, Tokyo, 295Google Scholar
  11. 11.
    Lesaint P, Raviart PA (1974) In: C. de Boor (ed) Mathematical aspects of finite elements in Partial Differential Equations. Academic Press, 89Google Scholar
  12. 12.
    Oldroyd JG (1961) Rheol Acta 1:337Google Scholar
  13. 13.
    Crochet MJ, Keunings R (1982) J Non-Newt Fluid Mech 10:339Google Scholar
  14. 14.
    Bird RB, Armstrong RC, Hassager O (1987) Dynamics of Polymeric Liquids, Vol 1, 2nd ed., WileyGoogle Scholar
  15. 15.
    Fortin M, Fortin A (1989) RAIRO M2AN, 23:593Google Scholar
  16. 16.
    Touzani R (1988) Comp Meth Appl Mech Eng 68:115Google Scholar
  17. 17.
    Brezzi F (1974) RAIRO Anal Num 8, R-2:129Google Scholar
  18. 18.
    Richardson S (1970) Rheol Acta 9:193Google Scholar

Copyright information

© Steinkopff 1990

Authors and Affiliations

  • M. El Hadj
    • 1
  • P. A. Tanguy
    • 1
  • A. Fortin
    • 2
  1. 1.CERSIM Department of Chemical EngineeringLaval UniversityQuebec CityCanada
  2. 2.Department of Applied MathematicsEcole PolytechniqueMontrealCanada

Personalised recommendations