Journal of Statistical Physics

, Volume 59, Issue 5–6, pp 1589–1602 | Cite as

Ergodic properties of the multidimensional rayleigh gas with a semipermeable barrier

  • L. Erdős
  • D. Q. Tuyen
Short Communications


We consider a multidimensional system consisting of a particle of massM and radiusr (molecule), surrounded by an infinite ideal gas of point particles of massm (atoms). The molecule is confined to the unit ball and interacts with its boundary (barrier) via elastic collision, while the atoms are not affected by the boundary. We obtain convergence to equilibrium for the molecule from almost every initial distribution on its position and velocity. Furthermore, we prove that the infinite composite system of the molecule and the atoms is Bernoulli.

Key words

Rayleigh gas Bernoulli flow Harris chain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Boldrighini, A. Pellegrinotti, E. Presutti, Ya. G. Sinai, and M. R. Soloveychik, Ergodic properties of a semi-infinite one-dimensional system of statistical mechanics,Commun. Math. Phys. 101:363–382 (1985).ADSCrossRefGoogle Scholar
  2. 2.
    I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai,Ergodic Theory (Springer-Verlag, 1982).Google Scholar
  3. 3.
    S. Goldstein, J. L. Lebowitz, and K. Ravishankar, Ergodic properties of a system in contact with a heat bath: A one dimensional model,Commun. Math. Phys. 85:419–427 (1982).MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    M. R. Soloveychik, Ergodic properties of a system of statistical mechanics with an external potential,Izv. Akad. Nauk SSSR Ser. Mat. 53(1):179–199 (1989) [in Russian].Google Scholar
  5. 5.
    D. Szász and B. Tóth, Towards a unified dynamical theory of the Brownian particle in an ideal gas,Commun. Math. Phys. 111:41–62 (1987).ADSzbMATHCrossRefGoogle Scholar
  6. 6.
    D. Szász and B. Tóth, A dynamical theory of Brownian motion for the Rayleigh gas,J. Stat. Phys. 47:681–693 (1987).ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • L. Erdős
    • 1
  • D. Q. Tuyen
    • 2
  1. 1.Eötvös Loránd UniversityBudapestHungary
  2. 2.Mathematical Institute of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations