Rheologica Acta

, Volume 28, Issue 6, pp 499–503 | Cite as

A purely elastic transition in Taylor-Couette flow

  • S. J. Muller
  • R. G. Larson
  • E. S. G. Shaqfeh


Experimental evidence of a non-inertial, cellular instability in the Taylor-Couette flow of a viscoelastic fluid is presented. A linear stability analysis for an Oldroyd-B fluid, which is successful in describing many features of the experimental fluid, predicts the critical Deborah number,De c , at which the instability is observed. The dependence ofDe c on the value of the dimensionless gap between the cylinders is also determined.

Key words

Taylor-Couetteflow stability Boger fluid Oldroyd-B equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Taylor GI (1923) Philos Trans Roy Soc, London, Ser A223:289Google Scholar
  2. 2.
    Coles D (1965) J Fluid Mech 21:385Google Scholar
  3. 3.
    Di Prima RC, Swinney HL (1985) In: Swinney HL, Gollub JP (eds) Hydrodynamic Instabilities and the Transition to Turbulence, second ed. Springer, New York, p 139Google Scholar
  4. 4.
    See, for example, Bird RB, Armstrong RC, Hassager O (1987) Dynamics of Polymeric Liquids, second ed. Wiley, New YorkGoogle Scholar
  5. 5.
    Beard DW, Davies MH, Walters K (1966) J Fluid Mech 24:321Google Scholar
  6. 6.
    Sun ZS, Denn MM (1972) AIChE J 18:1010Google Scholar
  7. 7.
    Hayes JW, Hutton JF (1972) Prog Heat Mass Transfer 5:195Google Scholar
  8. 8.
    Giesekus H (1966) Rheol Acta 5:239Google Scholar
  9. 9.
    Binnington RJ, Boger DV (1985) J Rheol 29:887Google Scholar
  10. 10.
    Prilutski G, Gupta RK, Sridhar T, Ryan ME (1983) J Non-Newtonian Fluid Mech 12:233Google Scholar
  11. 11.
    Chandrasekhar S (1954) Amer Math Monthly 61:32Google Scholar
  12. 12.
    Drazin PG, Reid WH (1981) Hydrodynamic Stability. Cambridge University Press, New YorkGoogle Scholar
  13. 13.
    Conte SD (1966) SIAM Rev 8:309Google Scholar
  14. 14.
    Keller HB (1968) Numerical Methods for Two-Point Boundary-Value Problems. Cinn-Blaisdell, Waltham, MAGoogle Scholar
  15. 15.
    Phan-Thien N (1983) J Non-Newtonian Fluid Mech 13:325Google Scholar
  16. 16.
    Phan-Thien N (1985) J Non-Newtonian Fluid Mech 17:37Google Scholar
  17. 17.
    Magda JJ, Larson RG (1988) J Non-Newtonian Fluid Mech 30:1Google Scholar

Copyright information

© Steinkopff 1989

Authors and Affiliations

  • S. J. Muller
    • 1
  • R. G. Larson
    • 1
  • E. S. G. Shaqfeh
    • 1
  1. 1.AT & T Bell LaboratoriesMurray HillUSA

Personalised recommendations