Monatshefte für Mathematik

, Volume 111, Issue 2, pp 119–126

# Continued fractions for some alternating series

• J. L. Davison
• J. O. Shallit
Article

## Abstract

We discuss certain simple continued fractions that exhibit a type of “self-similar” structure: their partial quotients are formed by perturbing and shifting the denominators of their convergents. We prove that all such continued fractions represent transcendental numbers. As an application, we prove that Cahen's constant
$$C = \sum\limits_{i \geqslant 0} {\frac{{( - 1)^i }}{{S_i - 1}}}$$
is transcendental. Here (S n ) isSylvester's sequence defined byS0=2 andS n+1 =S n 2 S n +1 forn≥0. We also explicitly compute the continued fraction for the numberC; its partial quotients grow doubly exponentially and they are all squares.

## Keywords

Continue Fraction Partial Quotient Transcendental Number
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. [1]
Adams, W. W., Davison, J. L.: A remarkable class of continued fractions. Proc. Amer. Math. Soc.65, 194–198 (1977).Google Scholar
2. [2]
Aho, A. V., Sloane, N. J. A.: Some doubly exponential sequences. Fib. Quart.11, 429–437 (1973).Google Scholar
3. [3]
Blanchard, A., Mendès France, M.: Symétrie et transcendance. Bull. Sc. Math.106, 325–335 (1982).Google Scholar
4. [4]
Böhmer, P. E.: Über die Transzendenz gewisser dyadischer Brüche. Math. Ann.96, 367–377 (1926).Google Scholar
5. [5]
Cahen, E.: Note sur un développement des quantités numériques, qui présente quelque analogie avec celui en fractions continues. Nouvelles Annales de Mathématiques10, 508–514 (1891).Google Scholar
6. [6]
Carmichael, R. D.: Diophantine Analysis. New York: John Wiley & Sons. 1915.Google Scholar
7. [7]
Curtiss, D. R.: On Kellogg's diophantine problem. Amer. Math. Monthly29, 380–387 (1922).Google Scholar
8. [8]
Curtiss, D. R.: Classes of diophantine equations whose positive integral solutions are bounded. Bull. Amer. Math. Soc.35, 859–865 (1929).Google Scholar
9. [9]
Danilov, L. V.: Some classes of transcendental numbers. Matematicheskie Zametki12, 149–154 (1972). (English translation in Math. Notes Acad. Sci. USSR12, 524–527 (1972)).Google Scholar
10. [10]
Davison, J. L.: A series and its associated continued fraction. Proc. Amer. Math. Soc.63, 29–32 (1977).Google Scholar
11. [11]
Erdös, P.: Az$$\frac{1}{{x_1 }} + \frac{1}{{x_2 }} + \cdots \frac{1}{{x_n }} = \frac{a}{b}$$ egyenlet egész számú megoldásairól. Mat. Lapok1, 192–210 (1950).Google Scholar
12. [12]
Erdös, P., Straus, E. G.: On the irrationality of certain Ahmes series. J. Indian Math. Soc.27, 129–133 (1964).Google Scholar
13. [13]
Franklin, J. N., Golomb, S. W.: A function-theoretic approach to the study of nonlinear recurring sequences. Pacific J. Math.56, 455–468 (1975).Google Scholar
14. [14]
Golomb, S. W.: On the sum of the reciprocals of the Fermat numbers and related irrationalities. Canad. J. Math.15, 475–478 (1963).Google Scholar
15. [15]
Golomb, S. W.: On certain nonlinear recurring sequences. Amer. Math. Monthly70, 403–405 (1963).Google Scholar
16. [16]
Greene, D. H., Knuth, D. E.: Mathematics for the Analysis of Algorithms. Basel: Birkhäuser. 1982.Google Scholar
17. [17]
Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers. Oxford. Univ. Press. 1985.Google Scholar
18. [18]
Hensley, D.: Lattice vertex polytopes with few interior lattice points. Pacific J. Math.105, 183–191 (1983).Google Scholar
19. [19]
Kellogg, O. D.: On a diophantine problem. Amer. Math. Monthly28, 300–303 (1921).Google Scholar
20. [20]
Kmošek, M.: Rozwini ecie niektórych liczb niewymiernych na ułamki łańcuchowe. (Master's Thesis). Warsaw: Uniwersytet Warszawski. 1979.Google Scholar
21. [21]
Köhler, G.: Some more predictable continued fractions. Mh. Math.89, 95–100 (1980).Google Scholar
22. [22]
Lagarias, J. C., Ziegler, G. M.: Bounds for lattice polytopes containing a fixed number of interior points in a sublattice. Canad. J. Math., to appear.Google Scholar
23. [23]
Odoni, R. W. K.: On the prime divisors of the sequencew n+1=1+w 1...w n. J. London Math. Soc.32, 1–11 (1985).Google Scholar
24. [24]
Pethö, A.: Simple continued fractions for the Fredholm numbers. J. Number Theory14, 232–236 (1982).Google Scholar
25. [25]
van der Poorten, A. J., Shallit, J. O.: Folded continued fractions. Preprint. 1990.Google Scholar
26. [26]
Remez, E. Ya.: On series with alternating signs which may be connected with two algorithms of M. V. Ostrogradskiî for the approximation of irrational numbers. Uspekhi Mat. Nauk6 (No. 5), 33–42 (1951).Google Scholar
27. [27]
Roberts, J.: Elementary Number Theory. MIT Press. 1977.Google Scholar
28. [28]
Roth, K. F.: Rational approximations to algebraic numbers. Mathematika2, 1–20 (1955).Google Scholar
29. [29]
Salzer, H. E.: The approximation of numbers as sums of reciprocals. Amer. Math. Monthly54, 135–142 (1947).Google Scholar
30. [30]
Salzer, H. E.: Further remarks on the approximation of numbers as sums of reciprocals. Amer. Math. Monthly53, 350–356 (1948).Google Scholar
31. [31]
Shallit, J. O.: Simple continued fractions for some irrational numbers. J. Number Theory11, 209–217 (1979).Google Scholar
32. [32]
Shallit, J. O.: Simple continued fractions for some irrational numbers II. J. Number Theory14, 228–231 (1982).Google Scholar
33. [33]
Shallit, J. O.: Sylvester's sequence and the transcendence of Cahen's constant. In: The Mathematical Heritage of Carl Friedrich Gauss. World Scientific Publishing. To appear.Google Scholar
34. [34]
Sloane, N. J. A.: A Handbook of Integer Sequences. New York: Academic Press. 1973.Google Scholar
35. [35]
Sylvester, J. J.: On a point in the theory of vulgar fractions. Amer. J. Math.3, 332–334 (1880).Google Scholar
36. [36]
Sylvester, J. J.: Postscript to note on a point in vulgar fractions. Amer. J. Math.3, 388–389 (1880).Google Scholar
37. [37]
Takenouchi, T.: On an indeterminate equation. Proc. Physico-Mathematical Soc. Japan3, 78–92 (1921).Google Scholar
38. [38]
Tamura, J.: Symmetric continued fractions related to certain series. Manuscript. 1990.Google Scholar
39. [39]
Zaks, J., Perles, M. A., Wills, J. M.: On lattice polytopes having interior lattice points. Elem. Math.37, 44–46 (1982).Google Scholar