Rheumatology International

, Volume 16, Issue 5, pp 175–180 | Cite as

Tissue oxygen measurement and31P magnetic resonance spectroscopy in patients with muscle tension and fibromyalgia

  • E. -S. Strobel
  • M. Krapf
  • M. Suckfüll
  • W. Brückle
  • W. Fleckenstein
  • W. Müller
Original Article


Muscle tissue oxygen tension was measured by a polarographic oxygen fine-needle probe, and inorganic phosphate and creatine phosphate spectra were recorded using magnetic resonance spectroscopy in patients with chronic low back pain and in patients with fibromyalgia. Results were compared with healthy controls. The tissue oxygen tension was markedly higher in those with tense muscles than in normal subjects. Magnetic resonance spectra for inorganic phosphate were higher in patients demonstrating muscle contraction, and intracellular pH was shifted in the alkaline direction in cases with increased muscle tension. Results show that hypoxia is not the result of increased muscle tension, as was thought previously, but results from oversupply of oxygen demanded by the muscle, leading to increased capillary perfusion and rising oxygen tension.

Key words

Fibromyalgia Back pain Muscle tension Tissue oxygen tension Magnetic resonance spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wolfe F, Smythe HA, Yunus MB et al. (1990) The American College of Rheumatology 1990 — criteria for the classification of fibromyalgia. Arthritis Rheum 33:160–172Google Scholar
  2. 2.
    Müller W, Lautenschläger J (1990) Die generalisierte Tendomyopathie (GTM). Klinik, Verlauf und Differentialdiagnose. Z Rheumatol 49:11–21Google Scholar
  3. 3.
    Müller W, Lautenschläger J (1990) Die generalisierte Tendomyopathie (GTM). Pathogenese und Therapie. Z Rheumatol 49:22–29Google Scholar
  4. 4.
    Granges G, Littlejohn GO (1993) A comparative study of clinical signs in fibromyalgia/fibrositis syndrome, healthy and exercising subjects. J Rheumatol 20:344–351Google Scholar
  5. 5.
    Hubbard DR, Berkoff GM (1993) Myofascial trigger points show spontaneous needle EMG activity. Spine 18:1803–1807Google Scholar
  6. 6.
    Henriksson KG (1989) Muscle pain in neuromuscular disorders and primary fibromyalgia. Neurologija 38:213–221Google Scholar
  7. 7.
    Bengtsson A, Henriksson KG, Larsson J (1986) Muscle biopsy in primary fibromyalgia. Light-microscopical and histochemical findings. Scand J Rheumatology 15:1–6Google Scholar
  8. 8.
    Bennett RM (1989) Muscle physiology and cold reactivity in the fibromyalgia syndrome. Rheum Dis Clin North Am 15:135–147Google Scholar
  9. 9.
    Lund N, Bengtsson A, Thorborg P (1986) Muscle tissue oxygen pressure in primary fibromyalgia. Scand J Rheumatology 15:165–173Google Scholar
  10. 10.
    Bengtsson A, Henriksson KG (1989) The muscle in fibromyalgia — a review of Swedish studies. J Rheumatol 16:144–149Google Scholar
  11. 11.
    Simms RW, Roy SH, Hrovat M, Anderson JJ, Skrinar G, LePoole SR, Zerbini CAF, De Luca C, Jolesz F (1994) Lack of association between fibromyalgia syndrome and abnormalities in muscle energy metabolism. Arthritis Rheum 37:794–800Google Scholar
  12. 12.
    Jubrias SA, Bennett RM, Klug GA (1994) Increased incidence of a resonance in the phosphodiester region of31P nuclear magnetic resonance spectra in the skeletal muscle of fibromyalgia patients. Arthritis Rheum 37:801–807Google Scholar
  13. 13.
    Brückle W, Suckfüll M, Fleckenstein W, Weiss C, Müller W (1990) Gewebe-pO2-Messung in der verspannten Rückenmuskulatur (m. erector spinae). Z Rheumatol 49:208–216Google Scholar
  14. 14.
    Suckfüll M (1988) Der Gewebe-pO2 in hartverspannten Mm. erectores spinae. Thesis, University of Lübeck, GermanyGoogle Scholar
  15. 15.
    Krapf MWW (1992) Die Erfassung von Muskelverspannungen im Musculus erector spinae mit Hilfe des „Tissue Compliance Meters”, der Oberfldchenelektromyographie, der Magnetreso nanzspektroskopie und der Sauerstoffpartialdruckmessung in der Muskulatur bei Patienten mit chronischen Lumbalgien und Patienten mit generalisierten Tendomyopathien. Thesis, University of Freiburg, GermanyGoogle Scholar
  16. 16.
    Krapf MWW, Müller S, Mennet P, Stratz T, Samborski W, Müller W (1992) Die Erfassung von Muskelverspannungen im Musculus erector spinae mit Hilfe der in vivo31P Magnetresonanzspektroskopie (31P MRS) bei Patienten mit chronischen Lumbalgien und generalisierten Tendomyopathien. Z Rheumatol 51:229–237Google Scholar
  17. 17.
    Kushmerick MJ (1989) Muscle energy metabolism, nuclear magnetic resonance spectroscopy and their potential in the study of fibromyalgia. J Rheumatol 16:40–46Google Scholar
  18. 18.
    Frey LD, Locher JT, Hrycaj P et al. (1992) Bestimmung der regionalen Glukose-Metabolisierungsrate der Lumbalmuskulatur bei Patienten mit eneralisierter Tendomyopathie (GTM) mittels dynamischer18F-FDG PET. Z Rheumatol 51:238–242Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • E. -S. Strobel
    • 1
  • M. Krapf
    • 2
  • M. Suckfüll
    • 3
  • W. Brückle
    • 4
  • W. Fleckenstein
    • 5
  • W. Müller
    • 2
  1. 1.Fachklinik SchweizerblickSchneckenhalde 9, and Hochrhein Institute for Rehabilitation ResearchBad SäckingenGermany
  2. 2.Hochrhein Institute for Rehabilitation ResearchBad SäckingenGermany
  3. 3.Department of PhysiologyUniversity of Lübeck Medical SchoolLübeckGermany
  4. 4.Rheumaklinik SonnengartenBad NenndorfGermany
  5. 5.GMS mbHKiel-MielkendorfGermany

Personalised recommendations