, Volume 161, Issue 1, pp 31–42 | Cite as

Root histogenesis from tobacco thin cell layers

  • M. M. Altamura
  • F. Capitani
  • D. Serafini-Fracassini
  • P. Torrigiani
  • G. Falasca


Internode stem expiants ofNicotiana tabacum cv. Samsun, consisting of eight cell layers: epidermis, subepidermal chlorenchyma, collenchyma and cortical parenchyma (i.e., thin cell layers), were cultured under conditions inducing rhizogenesis. The aim was to investigate the histological sequence of adventitious root formation in this system. The earliest cytological events in culture (12 h) were nucleolar extrusions and amitotic nuclear divisions. Though not restricted to a specific cell layer, the two phenomena were more frequent in the subepidermal chlorenchyma, and characterized the first phases (12-96 h) of cell proliferation mainly occurring in this layer. Amitoses were followed by the formation of thin walls within the original cells, resulting in the formation of intracellular clusters. These subepidermal clusters were separated by enlarged cells of the parent tissue, whose nuclei showed nucleolar extrusion. At day 3 the first mitoses were observed in cells having abundant starch inclusions. Amitotic divisions also continued, but less frequently. The increasing frequency of mitoses in the subepidermal chlorenchyma (day 4), as well as in the two underlying collenchymatous layers, contributed to the growth of the superficial clusters, in which small clumps of meristematic cells were formed; these, later (day 9), gave rise to root domes. The 5th cell layer remained undivided for a relatively long time (two weeks). The 6th and 7th layers proliferated mitotically later (from day 8 onwards) than the superficial layers and formed root domes following the same histological sequence. Wound callus, generated by the innermost layer, increased markedly in the last two weeks of culture and concomitantly formed vascular clumps surrounded by meristematic layers; these produced root primordia which were frequently anomalous (day 26–27). Regardless of its origin (i.e., superficial or deep layers of the expiant, or wound callus cells), root tip formation was always preceded by the differentiation of a sheath of starch-containing cells, from which the root cap developed.


Adventitious roots Histogenesis Thin cell layers Tobacco stem 



longitudinal section


standard error


transverse section


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altamura MM, Bassi P, Cavallini A, Cionini G, Cremonini R, Monacelli B, Pasqua G, Sassoli O, Tran Thanh Van K, Cionini PG (1987) Nuclear DNA changes during plant development and the morphogenetic response in vitro ofNicotiana tabacum tissues. Plant Sci 53: 73–79Google Scholar
  2. Altamura MM, Monacelli B, Pasqua G, Mazzolani G (1984) Organogenetic capacities of thin cellular layers cultured in vitro. Ann Bot (Roma) 42: 45–55Google Scholar
  3. Avanzi S, Maggini F, Innocenti AM (1973) Amplification of ribosomal cistrons during maturation of metaxylem in the root ofAllium cepa. Protoplasma 76: 197–210Google Scholar
  4. Avery GS (1933 a) Structure and germination of tobacco seed and the developmental anatomy of the seedling plant. Amer J Bot 20: 309–327Google Scholar
  5. — (1933 b) Structure and development of the tobacco leaf. Amer J Bot 20: 565–592Google Scholar
  6. Brossard D (1975) La néoformation de bourgeons végétatifs à partir de la moelle du Tabac (Nicotiana tabacum L., var Wisconsin 38) cultivée in vitro. Analyse cytochimique, historadiographique et cytophotométrique. Ann Sci Naturelles, Bot, 12 S, 16: 43–149Google Scholar
  7. Brown DD, Dawid IB (1968) Specific gene amplification in oocytes. Science 160: 272–280Google Scholar
  8. Chriqui D (1985) Induction de prolifération des cellules prérhizogènes: auxine et polyamines. Bull Soc Bot Fr, Actual Bot 132: 127–141Google Scholar
  9. —, Bercetche J (1985) Facteurs hormonaux et phénomènes amitotiques dans les explants végétaux cultivés in vitro. Bull Soc Bot Fr, Actual Bot 132: 152Google Scholar
  10. Clowes FAL, De La Torre C (1974) Inhibition of RNA synthesis and the relationship between nucleolar and mitotic cycles inZea mays root meristems. Ann Bot 38: 961–966Google Scholar
  11. Coleman WK, Greyson RI (1977) Analysis of root formation in leaf discs ofLycopersicon esculentum Mill. cultured in vitro. Ann Bot 41: 307–320Google Scholar
  12. Dien NT, Tran Thanh Van M (1974) Differentiation in vitro et de novo d'organes floraux directement à partir des couches minces de cellules de type épidermique deNicotiana tabacum. Étude au niveau cellulaire. Can J Bot 52: 2319–2322Google Scholar
  13. Esau K (1965) Plant anatomy. Wiley, New YorkGoogle Scholar
  14. Fasseas C, Bowes BG (1980) Ultrastructural observations on proliferating storage cells of mature cotyledons ofPhaseolus vulgaris L. cultured in vitro. Ann Bot 46: 143–152Google Scholar
  15. Favali MA, Serafini-Fracassini D, Sartorato P (1984) Ultrastructure and autoradiography of dormant and actived parenchyma ofHelianthus tuberosus. Protoplasma 123: 192–202Google Scholar
  16. Gahan PB (1984) Plant histochemistry and cytochemistry. An introduction. Academic Press, London, pp 197–198Google Scholar
  17. Giménez-Martin G, De La Torre C, Lopez-Saez JF, Espona P (1977) Plant nucleolus: structure and physiology. Cytobiologie 14: 421–462Google Scholar
  18. Goodspeed TH (1954) The genusNicotiana. Chron Bot 16: 103–104Google Scholar
  19. Grima-Pettenati J, Chriqui D, Sarni-Manchado P, Prinsen E (1989) Stimulation of lignification in neoformed calli induced byAgrobacterium rhizogenes on bean hypocotyls. Plant Sci 61: 179–188Google Scholar
  20. Innocenti AM, Avanzi S (1971) Some cytological aspects of the differentiation of metaxylem in the root ofAllium cepa. Caryologia 24: 283–292Google Scholar
  21. Izquierdo L, Vial JD (1962) Electron microscope observations on the early development of the rat. Z Zellforsch 56: 157–179Google Scholar
  22. Jensen WA (1962) Botanical histochemistry.Principles and practice. Freeman, San Francisco, pp 79, 90, 250–251Google Scholar
  23. Maeda E, Thorpe TA (1979) Shoot histogenesis in tobacco callus cultures. In Vitro 15: 415–424Google Scholar
  24. Martini G, Flavell R (1985) The control of nucleolus volume in wheat, a genetic study at three developmental stages. Heredity 54: 111–120Google Scholar
  25. —, Nuti Ronchi V (1974) Microdensitometric and autoradiographic analysis of cell proliferation in primary culture ofNicotiana glauca pith tissue. Cell Differ 3: 239–247Google Scholar
  26. — — (1977) In vivo observations of nucleolar extrusion in cultured callus cells of a non tumorousNicotiana glauca×N. langsdorffii hybrid. Protoplasma 91: 409–415Google Scholar
  27. Mazzi V (1977) Manuale di tecniche istologiche ed istochimiche. Piccin, Padova, p 127Google Scholar
  28. Miller RH (1980) Amitosis and endocytogenesis in the fruit ofMalus sylvestris. Ann Bot 46: 567–575Google Scholar
  29. Morris Johnson J, Jones LE (1967) Behavior of nucleoli and contracting nucleolar vacuoles in tobacco cells growing in microculture. Amer J Bot 54: 189–198Google Scholar
  30. Murashige T, Skoog F (1962) Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–479Google Scholar
  31. Nuti Ronchi V, Bennici A, Martini G (1973) Nuclear fragmentation in dedifferentiating cells ofNicotiana glauca pith tissue grown in vitro. Cell Differ 2: 77–85Google Scholar
  32. Sene A, Vasseur S, Lefebvre R (1983) Sur l'aptitude de petits explantats racinaires deCichorium intybus L. (var Witloof) à produire des racines adventives en culture in vitro. CR Acad Sci 297: 81–86Google Scholar
  33. Serafini-Fracassini D, Alessandri M (1983) Polyamines and morphogenesis inHelianthus tuberosus explants. In: Bachrach U, Kaye A, Chayen R (eds) Advances in polyamine research, vol 4. Raven Press, New York, pp 419–426Google Scholar
  34. —, Bagni N, Torrigiani P (1980)Nicotiana glauca×Nicotiana langdorffii tumor hybrid: growth, morphology, polyamines, and nucleic acids in vitro. Can J Bot 58: 2285–2293Google Scholar
  35. Torrey JG (1966) The initiation of organized development in plants. Adv Morphog 5: 39–91Google Scholar
  36. Torrigiani P, Altamura MM, Capitani F, Serafini-Frascassini D, Bagni N (1989) De novo root formation in thin cell layers of tobacco: changes in free and bound polyamines. Physiol Plant 77: 294–301Google Scholar
  37. Tran Thanh Van M, Chlyah A (1976) Différentiation de boutons floraux, de bourgeons végétatifs, de racines et de cal à partir de l'assise sous-épidermique des ramifications florales deNicotiana tabacum Wisc. 38. Étude infrastructurale. Can J Bot 54: 1979–1996Google Scholar
  38. —, Dien NT (1975) Étude au niveau cellulaire de la differentiation in vitro et de novo de bourgeons végétatifs, de racines, ou de cal à partir de couches minces de cellules de type épidermique deNicotiana tabacum Wisc. 38. Can J Bot 53: 553–559Google Scholar
  39. — —, Chlyah A (1974) Regulation of organogenesis in small explants of superficial tissue ofNicotiana tabacum L. Planta 119: 149–159Google Scholar
  40. van den Ende G, Croes AF, Kemp A, Barendse GWM, Kroh M (1984) Floral morphogenesis in thin-layer tissue cultures ofNicotiana tabacum. Physiol Plant 62: 83–88Google Scholar
  41. Wilcox H (1955) Regeneration of injured root systems in noble fir. Bot Gaz 116: 221–234Google Scholar
  42. Wilms FHA, Sassen MMA (1987) Origin and development of floral buds in tobacco explants. New Phytol 105: 57–65Google Scholar
  43. Wilson EB (1928) The cell in development and heredity. Macmillan, New York, pp 214–215Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • M. M. Altamura
    • 1
  • F. Capitani
    • 1
  • D. Serafini-Fracassini
    • 2
  • P. Torrigiani
    • 2
  • G. Falasca
    • 1
  1. 1.Dipartimento di Biologia VegetaleUniversità “La Sapienza”RomeItaly
  2. 2.Dipartimento di Biologia Evoluzionistica SperimentaleUniversità di BolognaBologna

Personalised recommendations