Zeitschrift für Physik B Condensed Matter

, Volume 59, Issue 4, pp 379–384 | Cite as

The conductivity of a two-dimensional electronic system of finite width in the presence of a strong perpendicular magnetic field and a random potential

  • L. Schweitzer
  • B. Kramer
  • A. MacKinnon
Article

Abstract

Starting from the Kubo formula the conductivity tensor of a two-dimensional electronic system in a perpendicular magnetic field is evaluated. It is shown that at zero temperature only the states at the Fermi level contribute. The Hall conductivity of a purely periodic system of finite width is calculated and compared with earlier suggestions by Thouless et al. For a system described by a periodic and a random potential the Hall conductivity is calculated as a function of the electron density. The results emphasize the importance of disorder independent current carrying states for the Quantum Hall effect which extend along the boundaries of the system. The plateaux values of the Hall conductivity are related to the number of these states, and are independent of the existence of extended bulk states below the Fermi energy.

Keywords

Spectroscopy Neural Network State Physics Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klitzing, K. von, Dorda, G., Pepper, M.: Phys. Rev. Lett.45, 494 (1980)Google Scholar
  2. 2.
    Laughlin, R.B.: Phys. Rev. B23, 5632 (1981)Google Scholar
  3. 3.
    Halperin, B.I.: Phys. Rev. B25, 2185 (1982)Google Scholar
  4. 4.
    Heuser, M., Hajdu, J.: Z. Phys.270, 289 (1974); Hajdu, J., Gummich, U.: Solid State Commun.52, 985 (1984)Google Scholar
  5. 5.
    Prange, R.E.: Phys. Rev. B23, 4802 (1981); Brenig, W.: Z. Phys. B — Condensed Matter50, 305 (1983)Google Scholar
  6. 6.
    Aoki, H., Ando, T.: Solid State Commun.38, 1079 (1981)Google Scholar
  7. 7.
    Thouless, D.J., Kohmoto, M., Nightingale, M.P., Nijs, M. den: Phys. Rev. Lett.49, 405 (1982)Google Scholar
  8. 8.
    Pruisken, A.M.M.: Nucl. Phys. B235, [F811], 277 (1984)Google Scholar
  9. 9.
    MacKinnon, A., Schweitzer, L., Kramer, B.: Surf. Sci.142, 189 (1984)Google Scholar
  10. 10.
    Schweitzer, L., Kramer, B., MacKinnon, A.: J. Phys. C17, 4111 (1984)Google Scholar
  11. 11.
    Luttinger, J.M.: Phys. Rev. B4, 814 (1951)Google Scholar
  12. 12.
    Kramer, B., Schweitzer, L., Mackinnon, A.: Z. Phys. B-Condensed Matter56, 297 (1984)Google Scholar
  13. 13.
    Bastin, A., Lewiner, B., Betbeder-Matibet, O., Nozieres, P.: J. Phys. Chem. Solids32, 1811 (1971)Google Scholar
  14. 14.
    Schweitzer, L., Kramer, B., MacKinnon, A.: Proc. LITPIM Suppl. (PTB-PG-1), 318 (PTB Braunschweig, 1984)Google Scholar
  15. 15.
    MacKinnon, A., Kramer, B., Graudenz, W.: J. Phys. (Paris)4, 63 (1981)Google Scholar
  16. 16.
    MacKinnon, A.: Z. Phys. B-Condensed Matter59, 385 (1985)Google Scholar
  17. 17.
    Ando, T.: J. Phys. Soc. Jpn.53, 3101 and 3126 (1984)Google Scholar
  18. 18.
    MacKinnon, A.: J. Phys. C16, L945 (1983)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • L. Schweitzer
    • 1
  • B. Kramer
    • 1
  • A. MacKinnon
    • 2
  1. 1.Physikalisch-Technische Bundesanstalt BraunschweigBraunschweigGermany
  2. 2.The Blackett LaboratoryImperial CollegeLondonUK

Personalised recommendations