Journal of comparative physiology

, Volume 144, Issue 4, pp 429–434 | Cite as

Prey-selective neurons in the toad's optic tectum and sensorimotor interfacing: HRP studies and recording experiments

  • A. Weerasuriya
  • J. -P. Ewert


  1. 1.

    In accordance with recent recording experiments in paralyzed toadsBufo bufo (L.) neurons have been identified between layers 6 and 8 of the optic tectum that exhibit selective responses to the configuration of moving prey dummies.

  2. 2.

    Injection of HRP into the two extrinsic tongue muscles — which are the effectors of the toad's snapping response — showed that motoneurons innervating the protractor (m. genioglossus) and the retractor (m. hyoglossus) have distinct topographical distributions within the hypoglossal nucleus of the medulla oblongata.

  3. 3.

    Following injection of HRP in the vicinity of the hypoglossal nucleus, retrogradely labelled fibers have been identified in (1) the dorso-lateral tegmentum, (2) the fasciculus tegmentalis, (3) ansulate commissure of the ventral tegmentum, and (4) layer 7 of the optic tectum. Retrogradely labelled cells were identified in (1) the subtectal region, (2) the nucleus antero-ventralis tegmenti mesencephali, and (3) layer 6 of the optic tectum. Labelled cells were also identified in the caudal part of the area ventrolateralis thalami, occasionally in the lateral part of the posterocentral nucleus, and in the postero-lateral nucleus of the caudal thalamus.

  4. 4.

    The results are discussed with regard to the control of prey-catching behavior, and it is suggested that the toad's optic tectum contains a substrate for sensorimotor interfacing.



Lateral Part Medulla Oblongata Caudal Part Optic Tectum Recording Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cajal Y, Ramón S (1909) Histologie du système nerveux de l'homme et des vertébrés. Maloine, ParisGoogle Scholar
  2. Comer C, Grobstein P (1981) Involvement of midbrain structures in factually and visually elicited prey acquisition behavior in the frogRanapipiens. J Comp Physiol 142:151–160Google Scholar
  3. Cruce WLR (1974) A supraspinal monosynaptic input to hindlimb motoneurons in lumbar spinal cord of the frogRana cates-beiana. J Neurophysiol 37:691–704Google Scholar
  4. De Olmos J, Heimer L (1977) Mapping of collateral projections with the HRP-method. Neurosci Lett 6:107–114Google Scholar
  5. Ebbesson SOE, Hansel M, Scheich H (1981) An ‘on the slide’ modification of the de Olmos-Heimer HRP method. Neurosci Lett 22:1–4Google Scholar
  6. Ewert J-P (1967) Aktivierung der Verhaltensfolge beim Beutefang der Erdkröte (Bufo bufo L.) durch elektrische Mittelhirnreizung. Z Vergl Physiol 54:455–481Google Scholar
  7. Ewert J-P (1971) Single unit response of the toad (Bufo americanus) caudal thalamus to visual objects. Z Vergl Physiol 74:81–102Google Scholar
  8. Ewert J-P (1982) Tectal mechanisms underlying prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York (in press)Google Scholar
  9. Ewert J-P, Borchers H-W (1971) Reaktionscharakteristik von Neuronen aus dem Tectum opticum und dem Subtectum der ErdkröteBufo bufo (L.). Z Vergl Physiol 71:165–189Google Scholar
  10. Ewert J-P, Wietersheim Av (1974) Musterauswertung durch Tectum- und Thalamus-Praetectum-Neurone im visuellen System der KröteBufo bufo L. J Comp Physiol 92:131–148Google Scholar
  11. Grüsser O-J, Grüsser-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 297–385Google Scholar
  12. Kramer EB, Rath T, Lischka MF (1979) Somatotopic organization of the hypoglossal nucleus: a HRP study in the rat. Brain Res 170:533–537Google Scholar
  13. Lázár G (1969) Efferent pathway of the optic tectum in the frog. Acta Biol Acad Sci Hung 20:171–183Google Scholar
  14. Porter R (1965) Synaptic potentials in hypoglossal motoneurones. J Physiol (Lond) 180:209–244Google Scholar
  15. Rehn B (1977) Cerebrale Repräsentation des Fluchtverhaltens der ErdkröteBufo bufo L. PhD Thesis, Technical University of DarmstadtGoogle Scholar
  16. Rubinson K (1968) Projections of the optic tectum of the frog. Brain Behav Evol 1:529–561Google Scholar
  17. Schürg-Pfeiffer E, Ewert J-P (1981) Investigation of neurons involved in the analysis of Gestalt prey features in the frogRana temporaria. J Comp Physiol 141:139–152Google Scholar
  18. Székely G, Lázár G (1976) Cellular and synaptic architecture of the optic tectum. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 407–434Google Scholar
  19. Uemura-Sumi M, Mizuno N, Nomura S, Iwahori N, Takeuchi Y, Matsushima R (1981) Topographical representation of the hypoglossal nerve branches and tongue muscles in the hypoglossal nucleus of macaque monkeys. Neurosci Lett 22:31–35Google Scholar
  20. Wietersheim Av, Ewert J-P (1978) Neurons of the toad's (Bufo bufo L.) visual system sensitive to moving configurational stimuli: a statistical analysis. J Comp Physiol 126:35–42Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • A. Weerasuriya
    • 1
  • J. -P. Ewert
    • 1
  1. 1.Arbeitsgruppe Neuroethologie und Biokybernetik, Fachbereich 19 der GhKUniversität des Landes HessenKassel-OberzwehrenFederal Republic of Germany

Personalised recommendations