, Volume 159, Issue 1, pp 70–73 | Cite as

Non-invasive histochemistry of plant materials by magnetic resonance microscopy

  • V. Sarafis
  • H. Rumpel
  • J. Pope
  • W. Kuhn
Rapid Communication


We have combined nuclear magnetic resonance (NMR) imaging on the microscopic scale with chemical shift selection to demonstrate the application of magnetic resonance imaging (MRI) to plant histochemistry. As an example of the method we have obtained separate images of the distribution of reserve oil and anethole in dried fennel mericarps. The technique can be employed to separately image the distribution of aromatics, carbohydrates, oils, water and possibly fatty acids in suitable plant materials.


Histochemistry Nuclear magnetic resonance Non-invasive techniques Magnetic resonance imaging 



nuclear magnetic resonance


magnetic resonance imaging


correlation spectroscopy




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguyao JB, Blackband SJ, Schoeniger J, Mattingly MA, Hintermann M (1986) Nuclear magnetic resonance imaging of a single cell. Nature 322: 190–191Google Scholar
  2. Aue WP, Bartholdi E, Ernst RR (1976) Two dimensional spectroscopy: application to nuclear magnetic resonance. J Chem Phys 64: 2229–2246Google Scholar
  3. Bottomley PA, Foster TH, Leue WM (1984) In vivo NMR chemical shift imaging by selective irradiation. Proc Natl Acad Sci USA 81: 6856–6860Google Scholar
  4. Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153: 189–194Google Scholar
  5. Dumoulin C (1985) A method for chemical shift selective imaging. Magn Reson Med 2: 583–585Google Scholar
  6. Eccles CD, Callaghan PT (1986) High resolution imaging. The NMR microscope. J Magn Reson 68: 393–398Google Scholar
  7. Gassner G, Hohmann B, Deutschmann E (1989) Mikroskopische Untersuchung pflanzlicher Lebensmittel, 5th edn. G Fischer, StuttgartGoogle Scholar
  8. Haase A, Frahm J, Hanicke W, Matthaei D (1985)1H NMR chemical shift selective imaging. Phys Med Biol 30: 341–344Google Scholar
  9. Hall LD, Sukumar S, Talaga SL (1984) Chemical shift resolved tomography using frequency selective excitation and suppression of specific resonance. J Magn Reson 56: 275–278Google Scholar
  10. Harrison LG, Luck SD, Munasinghe BDJP, Hall LD (1988) Magnetic resonance imaging approaching microscopic scale: maturation stages ofAcetebularia mediterranea reproductive caps. J Cell Sci 91: 379–388Google Scholar
  11. Hennig J, Friedburg H (1986) Fat and water separation of 0.23 T using simultaneous shift selective imaging. Magn Reson Med 3: 844–848Google Scholar
  12. Jenner CF, Xia Y, Eccles CD, Callaghan PT (1988) Circulation of water within wheat grain revealed by NMR micro-imaging. Nature 336: 399–402Google Scholar
  13. Joseph PM (1985) A spin echo chemical shift MR imaging techniques. J Comput Assist Tomogr 9: 651–658Google Scholar
  14. Kuhn W (1990) NMR microscopy, fundamentals, limits and possible applications. Angew Chem (english edition) 29: 1–19Google Scholar
  15. Melchior H, Kastner H (1974) Gewürze. Paul Parey, BerlinGoogle Scholar
  16. Morris PC (1986) NMR in medicine and biology. Clarendon Press, OxfordGoogle Scholar
  17. O'Brien TP, McCully ME (1981) The study of plant structure: principles and selected methods. Termacarphi, MelbourneGoogle Scholar
  18. Rosen BR, Wedeen VJ, Brady TJ (1984) Selective saturation NMR imaging. J Comput Assist Tomogr 8: 813–818Google Scholar
  19. Sillerud LO, van Hulsteyn DB, Griffey RH (1988) [13C] polarization transfer proton NMR imaging of a sodium [13C] formate phantom at 4.7 Tesla. J Magn Reson 76: 380Google Scholar
  20. Wagner H (1988) Drogen und ihre Inhaltsstoffe, 4th edn. G Fischer, Stuttgart [Stahl E, Deutschmann F, Hohmann B, Reinhard E, Sprecker E, Wagner H, Pharmazeutische Biologie, part 2]Google Scholar
  21. Walter L, Balling A, Zimmermann U, Haase A, Kuhn W (1989) NMR imaging of leaves ofMesembryanthemum crystallinum L. plants grown at high salinity. Planta 178: 524–530Google Scholar
  22. Yannoni CS (1982) High resolution NMR in solids: the CPMAS experiment. Accounts Chem Res 15: 201–208Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • V. Sarafis
    • 1
  • H. Rumpel
    • 2
  • J. Pope
    • 3
  • W. Kuhn
    • 2
  1. 1.University of Western SydneyRichmond
  2. 2.Hauptabteilung MedizintechnikFraunhofer-Institut für zerstörungsfreie PrüfverfahrenSt. Ingbert
  3. 3.Department of PhysicsUniversity of New South WalesKensingtonAustralia

Personalised recommendations