Zeitschrift für Physik B Condensed Matter

, Volume 33, Issue 1, pp 79–95 | Cite as

Density correlation function and dynamic transient exponents for liquid helium at and aboveT λ

  • Volker Dohm
Article

Abstract

The critical dynamics of liquid helium are studied by means of renormalized field theory on the basis of the symmetric planar-spin model of Halperin, Hohenberg, and Siggia. The stability problem of the dynamic fixed point is discussed in detail. Two-loop results suggest, but do not establish, the stability of the dynamic scaling fixed point. The previously found small fixed point valuew*~O(0.15) is tentatively confirmed which implies a small ratio of relaxation rates of the order parameter and the entropy. The ensuing dynamic transient exponents are calculated. The density correlation function is determined toO(ε=4−d) at and aboveTλ. Its properties in the casew*≪1 provide quantitative support for the recently proposed explanation of the discrepancy between theory and light scattering experiments. A small value ofw* implies pronounced peaks of the frequency spectrum at finite frequencies at and aboveTλ. It also suppresses the temperature dependence of finite-frequency properties over an enlarged critical region as found in light scattering measurements. The quantitative relation between the value ofw*>0 and observable properties of the frequency spectrum is computed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hohenberg, P.C., Halperin, B.I.: Rev. Mod. Phys.49, 435 (1977)Google Scholar
  2. 2.
    Halperin, B.I., Hohenberg, P.C., Siggia, E.D.: Phys. Rev. B13, 1299 (1976)Google Scholar
  3. 3.
    Siggia, E.D.: Phys. Rev. B13, 3218 (1976)Google Scholar
  4. 4.
    Hohenberg, P.C., Siggia, E.D., Halperin, B.I.: Phys. Rev. B14, 2865 (1976)Google Scholar
  5. 5.
    Ferrell, R.A., Menyhárd, N., Schmidt, H., Schwabl, F., Szépfalusy, P.: Phys. Rev. Lett.18, 891 (1967); Ann. Phys. (N.Y.)47, 565 (1968)Google Scholar
  6. 6.
    Halperin, B.I., Hohenberg, P.C.: Phys. Rev.177, 952 (1969)Google Scholar
  7. 7.
    Winterling, G., Holmes, F.S., Greytak, T.J.: Phys. Rev. Lett.30, 427 (1973) Winterling, G., Miller, J., Greytak, T.J.: Phys. Lett.48 A, 343 (1974)Google Scholar
  8. 8.
    Vinen, W.F., Palin, C.J., Lumley, J.M., Hurd, D.L., Vaughn, J.M.: Low Temperature Physics, LT-14, edited by M. Krusius and M. Vuorio, Vol. I, p. 191. Amsterdam: North-Holland 1975Google Scholar
  9. 9.
    Tarvin, J.A., Vidal, F., Greytak, T.J.: Phys. Rev. B15, 4193 (1977)Google Scholar
  10. 10.
    Tyson, J.A.: Phys. Rev. Lett.21, 1235 (1968)Google Scholar
  11. 11.
    Ahlers, G.: Phys. Rev. Lett.21, 1159 (1968); in Proceedings of the Twelfth International Conference on Low Temperature Physics, edited by E. Kanda, p. 21. Tokyo: Keigaku 1971Google Scholar
  12. 12.
    Ahlers, G. In: The Physics of Liquid and Solid Helium, edited by K.H. Benneman and J.B. Ketterson, Vol. 1, Chap. II. New York: Wiley 1976Google Scholar
  13. 13.
    DeDominicis, C., Peliti, L.: Phys. Rev. Lett.38, 505 (1977)Google Scholar
  14. 14.
    DeDominicis, C., Peliti, L.: Phys. Rev. B18, 353 (1978)Google Scholar
  15. 15.
    The existence of a fixed point withw *=0 was first noticed in the context of a planar (n=2) spin model within a first-orderε-calculation by Gunton, J.D., Kawasaki, K.: Progr. Theor. Phys.56, 61 (1976), in which case this fixed point is unstableGoogle Scholar
  16. 16.
    Dohm, V., Ferrell, R.A.: Phys. Lett.67 A, 387 (1978)Google Scholar
  17. 17.
    Dohm, V.: Z. Physik B31, 327 (1978)Google Scholar
  18. 18.
    Ferrell, R.A., Dohm, V., Bhattacharjee, J.K.: University of Maryland Technical Report#79-003 (July 1978), and Phys. Rev. Lett.41, 1818 (1978)Google Scholar
  19. 19.
    Ferrell, R.A., Bhattacharjee, J.K.: University of Maryland Technical Report#78-080 (July 1978), submitted to Ann. Phys.Google Scholar
  20. 20.
    Janssen, H.K.: Z. Physik B23, 377 (1976)Google Scholar
  21. 21.
    DeDominicis, C.: J. Phys. (Paris)37, Colloque C-247 (1976)Google Scholar
  22. 22.
    Bausch, R., Janssen, H.K., Wagner, H.: Z. Physik B24, 113 (1976)Google Scholar
  23. 23.
    Janssen, H.K.: Z. Physik B26, 187 (1977)Google Scholar
  24. 24.
    Sasvári, L., Schwabl, F., Szépfalusy, P.: Physica81 A, 108 (1975)Google Scholar
  25. 25.
    Sasvári, L., Szépfalusy, P.: Physica87 A, 1 (1977)Google Scholar
  26. 26.
    Martin, P.C., Siggia, E.D., Rose, H.A.: Phys. Rev. A8, 423 (1973)Google Scholar
  27. 27.
    Brézin, E., Le Guillou, J.C., Zinn-Justin, J. In: Phase Transitions and Critical Phenomena, edited by Domb, C., Green, M.S., Vol. 6. New York: Academic 1976Google Scholar
  28. 28.
    Dohm, V., Janssen, H.K.: Phys. Rev. Lett.39, 946 (1977); J. Appl. Phys.49, 1347 (1978); and Renormalized Field Theory of Bicritical Dynamics, manuscript in preparationGoogle Scholar
  29. 30.
    t'Hooft, G., Veltman,M.: Nucl. Phys. B44, 189 (1972)Google Scholar
  30. 31.
    Halperin, B.I., Hohenberg, P.C., Ma, S.-K.: Phys. Rev. B10, 139 (1974) and13, 4119 (1976) Brézin, E., De Dominicis, C.: Phys. Rev. B12, 4954 (1975) Murata, K.K.: Phys. Rev. B13, 2028 (1976)Google Scholar
  31. 35.
    Wegner, F.: Z. Physik218, 265 (1969)Google Scholar
  32. 36.
    Freedman, R., Mazenko, G.F.: Phys. Rev. Lett.34, 1575 (1975); Phys. Rev. B13, 4967 (1976)Google Scholar
  33. 37.
    Wegner, F.: Z. Physik216, 433 (1968)Google Scholar
  34. 38.
    Hubbard, J.: J. Phys. C4, 53 (1971)Google Scholar
  35. 39.
    Dohm, V.: Sol. State Comm.20, 657 (1976). Equation (23) contains a misprint. It should readF(x)=−1/8ln(i x)+P(x −1/2). The normalization point NP in Eq.(16) should beq=0,ω=λµ 4 Google Scholar
  36. 40.
    See however Nolan, M.J., Mazenko, G.F.: Phys. Rev. B15, 4471 (1977) The results of this work disagree qualitatively with those of Ref.37–39, although essentially the same approximation (one-loop approximation) was used. This discrepancy is as yet unresolved. For experimental results see e.g. Dietrich, O.W., Als-Nielsen, J., Passell, L.: Phys. Rev. B14, 4923 (1976), Fig. 10Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Volker Dohm
    • 1
    • 2
  1. 1.Department of Physics and AstronomyUniversity of MarylandCollege ParkUSA
  2. 2.Institut für FestkörperforschungKernforschungsanlage Jülich GmbHJülich 1Germany

Personalised recommendations