Advertisement

Zeitschrift für Physik B Condensed Matter

, Volume 21, Issue 4, pp 339–346 | Cite as

Dielectric function and plasma resonances of small metal particles

  • L. Genzel
  • T. P. Martin
  • U. Kreibig
Article

Abstract

Using the simple model of electrons in a box, a dielectric function is derived which should be appropriate for small metal particles. This dielectric function is used to examine quantum size effects in the optical absorption spectra. For very small particles of uniform size and shape, the plasma resonance absorption should shift and broaden and should show fine structure corresponding to transitions between discrete conduction band energy levels. The size dependence of the shift and broadening was measured and found to be in quantitative agreement with theory.

Keywords

Neural Network Conduction Band Fine Structure Nonlinear Dynamics Optical Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fröhlich, H.: Physica6, 406 (1937)Google Scholar
  2. 2.
    Kubo, R.: J. Phys. Soc. Japan17, 975 (1962)Google Scholar
  3. 3.
    Jaklevic, R.C., Lambe, J., Mikkor, M., Vassell, W.C.: Phys. Rev. Lett.26, 88 (1971)Google Scholar
  4. 4.
    Tanner, D.B., Sievers, A.J., Buhrman, R.A.: Phys. Rev. B11, 1330 (1975)Google Scholar
  5. 5.
    Doremus, R.H.: J. Chem. Phys.42, 414 (1965)Google Scholar
  6. 6.
    Kreibig, U., v. Fragstein, C.: Z. Physik224, 307 (1969)Google Scholar
  7. 7.
    Kreibig, U., Zacharias, P.: Z. Physik231, 128 (1970)Google Scholar
  8. 8.
    Kreibig, U.: J. Phys. F: Metal Phys.4, 999 (1974)Google Scholar
  9. 9.
    Duthler, C.J., Johnson, S.E., Broida, H.P.: Phys. Rev. Lett.26, 1236 (1971)Google Scholar
  10. 10.
    Smithard, M.A.: Solid State Commun.13, 153 (1973)Google Scholar
  11. 11.
    Smithard, M.A., Dupree, R.: phys. stat. sol. (a)11, 695 (1972)Google Scholar
  12. 12.
    Ganière, J.-D., Rechsteiner, R., Smithard, M.A.: Solid State Commun.16, 113 (1975)Google Scholar
  13. 13.
    Kawabata, A., Kubo, R.: J. Phys. Soc. Japan21, 1765 (1966)Google Scholar
  14. 14.
    Cini, M., Ascarelli, P.: J. Phys. F: Metal Phys.4, 1998 (1974)Google Scholar
  15. 15.
    Lushnikov, A.A., Simonov, A.J.: Z. Physik270, 17 (1974)Google Scholar
  16. 16.
    Mie, G.: Ann. Physik 425, 377 (1908)Google Scholar
  17. 17.
    Fuchs, R.: Phys. Rev. B11, 1732 (1975)Google Scholar
  18. 18.
    Maxwell-Garnett, S.C.: Phil. Trans. R. Soc. Lond.203, 385 (1904)Google Scholar
  19. 19.
    Genzel, L., Martin, T.P.: phys. stat. sol. (b)51, 91 (1972)Google Scholar
  20. 20.
    Genzel, L., Martin, T.P.: Surf. Sci.34, 33 (1973)Google Scholar
  21. 21.
    Gor'kov, L.P., Eliashberg, G.M.: Sov. Phys. JETP21, 940 (1965)Google Scholar
  22. 22.
    Rice, M.J., Schneider, W.R., Strässler, S.: Phys. Rev. B8, 474 (1973)Google Scholar
  23. 23.
    Denton, R., Mühlschlegel, B., Scalapino, D.J.: Phys. Rev. B7, 3589 (1973)Google Scholar
  24. 24.
    Stookey, S.D.: Ind. Eng. Chem.41, 856 (1949); J. Am. Ceram. Soc.32, 246 (1949)Google Scholar
  25. 25.
    Maurer, R.D.: J. Appl. Phys.29, 1 (1958); J. Chem. Phys.31, 444 (1959)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • L. Genzel
    • 1
  • T. P. Martin
    • 1
  • U. Kreibig
    • 2
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgart 80Germany
  2. 2.Physikalisches InstitutUniversität des SaarlandesSaarbrücken 15Germany

Personalised recommendations