Integral Equations and Operator Theory

, Volume 27, Issue 3, pp 347–378 | Cite as

A functional model approach to linear neutral functional differential equations

  • Sjoerd M. Verduyn Lunel
  • Dmitry V. Yakubovich

1991 Mathematics Subject Classification

Primary 34K40, 47A45 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Boas, R.P.,Entire functions, Academic Press, New York, 1954.Google Scholar
  2. [2]
    Burns, J.A., T.L. Herdman and H.W. Stech, “Linear functional differential equations as semigroups on product spaces”,SIAM J. Math. Anal. 14, (1983), 98–116.Google Scholar
  3. [3]
    Delfour, M., “The largest class of hereditary systems defining aCo-semigroup”,Canad. J. Math. 32, (1980), 969–975.Google Scholar
  4. [4]
    Diekmann, O, S.A. van Gils, S.M. Verduyn Lunel and H.-O. Walther,Delay equations: functional, complex and nonlinear analysis, Springer-Verlag, New York, 1995.Google Scholar
  5. [5]
    Duren, P.L.,Theory of H p spaces, Academic Press, New York, 1970.Google Scholar
  6. [6]
    Hale, J.K. and S.M. Verduyn Lunel,Introduction to functional differential equations, Springer-Verlag, New York, 1993.Google Scholar
  7. [7]
    Kaashoek, M.A. and S.M. Verduyn Lunel, “Characteristics matrices and spectral properties of evolutionary systems”,Trans. Amer. Math. Soc. 334, (1992), 479–517.Google Scholar
  8. [8]
    Nikol'skiî, N.K.,Treatise on the shift operator, Springer-Verlag, Berlin, 1986.Google Scholar
  9. [9]
    Pazy, A.,Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983.Google Scholar
  10. [10]
    Potapov, V.P., “On the multiplicative structure ofJ-nonexpansive matrix functions”,Trudy Moskovsk. Math. Obŝc. 4, (1955), 125–236 (Russian); English transl. inAmer. Math. Soc. Transl. (2) 15 (1966), 131–243.Google Scholar
  11. [11]
    Sz.-Nagy, B. and C. Foias,Harmonic analysis of operators on a Hilbert space, North-Holland, Amsterdam, and Akad. Kiadó, Budapest, 1970.Google Scholar
  12. [12]
    Treil, S.R., “Hankel operators, inbedding theorems and bases of coinvariant subspaces of the multiple shift operator”,Algebra i analiz 1, (1989), 200–234; English transl. inLeningrad Math. J. 1 (1990), 1515–1549.Google Scholar
  13. [13]
    Vasyunin, V.I., “On the number of Carleson series”,Zap. Nauĉh, Sem. Leningrad. Otde. Mat. Inst. Steklov (LOMI) 65, (1976), 178–182 (Russian).Google Scholar
  14. [14]
    Vasyunin, V.I., “Unconditionally convergent spectral expansions and interpolating problems”,Trudy Mat. Inst. Steklov 130, (1978), 5–49; English transl. in Proc. Steklov Inst. Math.1979, no. 4 (130).Google Scholar
  15. [15]
    Verduyn Lunel, S.M., “A sharp version of Henry's theorem on small solutions”,J. Differential Eqns 62, (1986), 266–274.Google Scholar
  16. [16]
    Verduyn Lunel, S.M., “The closure of the generalized eigenspace of a class of infinitesimal generators”,Proc. Roy. Soc. Edinburgh Sect. A 117A, (1991), 171–192.Google Scholar
  17. [17]
    Verduyn Lunel, S.M., “About completeness for a class of unbounded operators”,J. Differential Eqns. 120, (1995), 108–132.Google Scholar
  18. [18]
    Yakubovich, D.V., “Dual piecewise analytic bundle shift models of linear operators”,J. Funct. Anal., (1996), to appear.Google Scholar

Copyright information

© Birkhäuser Verlag 1997

Authors and Affiliations

  • Sjoerd M. Verduyn Lunel
    • 1
  • Dmitry V. Yakubovich
    • 2
  1. 1.Faculteit Wiskunde en InformaticaUniversiteit van AmsterdamAmsterdamThe Netherlands
  2. 2.Dept. of Mathematics and MechanicsSt. Petersburg UniversitySt. PetersburgRussia

Personalised recommendations