Zeitschrift für Physik B Condensed Matter

, Volume 98, Issue 2, pp 151–161 | Cite as

Longitudinal electric response and loss-function of metallic microspheres and voids

  • R. v. Baltz
  • M. Mensch
  • H. Zohm


The response of a spherical metallic particle and a void in a metal on an arbitrary external electrical (gradient) field is given analytically within two models: a macroscopic dielectric description in terms of dielectric functions and a linearized hydrodynamic theory which takes into account boundary effects as well as spatial dispersion. From the response functions, the eigenfrequencies of the collective modes and the electron-energy-loss function are obtained. For small radii we found collective modes extending beyond the classical ℓ = ∞ limit of surface-plasmons up to the volume-plasmon. Concerning electron-energy-losses, our results demonstrate that the “blue-shift” on the collective modes which were observed in potassium clusters or calculated for voids in metals are almost of classical origin and stem from spatial dispersion.


71.45Gm 73.20Mf 79.20Kz 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Perenboom, J.A.A.J., Wyder, P., and Meier, F., Phys. Rep.78, 174 (1981)Google Scholar
  2. 2.
    Kreibig, U. and Genzel, L., Surf. Sci.156, 678 (1985)Google Scholar
  3. 3.
    Halperin, W., Rev. Mod. Phys.58, 533 (1986).Google Scholar
  4. 4.
    Brack, M., Rev. Mod. Phys.65, 677 (1993).Google Scholar
  5. 5.
    Mie, G., Ann. Phys. (Leipzig)25, 377 (1908). see: Born, M. and Wolf, E.,Principles of Optics, Pergamon (1959) p. 630.Google Scholar
  6. 6.
    Crowell, J. and Ritchie, R.H., Phys. Rev.172, 436 (1968).Google Scholar
  7. 7.
    Ferrell, T.L. and Echinique, P.M., Phys. Rev. Lett.55, 1526 (1985); Ferrell, T.L., Warmack, R.J., Anderson, V.E. and Echinique, P.M., Phys. Rev.B35, 7365 (1987).Google Scholar
  8. 8.
    Kramer, B., Ed.Quantum Coherence in Mesoscopic Systems, Nato ASI, series B, Phys. Vol. 254, Plenum, (1991).Google Scholar
  9. 9.
    Ekardt, W., Phys. Rev.B32, 1961 (1985),B33, 8803 (1986),B36, 4483 (1987)Google Scholar
  10. 10.
    Beck, D.E., Phys. Rev.B43, 7301 (1991).Google Scholar
  11. 11.
    Bloch, F., Z. Phys.81, 363 (1933).Google Scholar
  12. 12.
    Forstmann, F. and Stenschke, H., Phys. Rev. Lett.38, 1365 (1977), Phys. RevB17, 1489, (1978), and references cited therein.Google Scholar
  13. 13.
    Jensen, H., Z. Phys.106, 620 (1937).Google Scholar
  14. 14.
    Fujimoto, F. and Komaki, K., J. Phys. Soc. Jap.25, 1679 (1968).Google Scholar
  15. 15.
    Lushnikov, A.A. and Simonov, A.J., Z. Phys.270, 17 (1974),B21, 357 (1975).Google Scholar
  16. 16.
    Ashley, J.C. and Ferrell, T.L., Phys. Rev.B14, 3277 (1976).Google Scholar
  17. 17.
    Boardman, A.D. and Paranjape, B.V., J. Phys.F 7, 1935 (1977).Google Scholar
  18. 18.
    Aers, G.C., Paranjape, B.V., and Boardman, A.D., Jour. Phys. Chem. Solids40, 319, (1979).Google Scholar
  19. 19.
    Barberán, N. and Bausells, J., Phys. Rev.B31, 6354 (1985).Google Scholar
  20. 20.
    Tran Thoai, D.B., phys. stat. sol. (b)136, 291 (1986).Google Scholar
  21. 21.
    Penn, D.R. and Apell, P., J. Phys. C16, 5729 (1983).Google Scholar
  22. 22.
    Feibelman, P.J., Prog. Surf. Sci.12, 287 (1982).Google Scholar
  23. 23.
    Penn, D.R. and Rendell, P.W., Phys. Rev. Lett.47, 1067 (1981).Google Scholar
  24. 24.
    Tanner, D.B., Phys. Rev.30, 1042 (1984).Google Scholar
  25. 25.
    Hua, Xia Ming and Gersten, J.F., Phys. Rev.B31, 855, (1985).Google Scholar
  26. 26.
    vom Felde, A., Fink, J., and Ekardt, W., Phys. Rev. Lett.61, 2249 (1988).Google Scholar
  27. 27.
    Keldysh, L.V., Kirshnits, D.A., and Maradudin, A.A., Eds.The dielectric function of condensed systems. North Holland (1989).Google Scholar
  28. 28.
    Jackson, J.D.,Classical Electrodynamics, Wiley (1962).Google Scholar
  29. 29.
    Abramowitz, M. and Stegun, I.Handbook of Mathematical Functions, Dover Publications, INC, New York (1968).Google Scholar
  30. 30.a)
    Zohm, H.,Linearer Response eines Metallkügelchens und Verlustfunktion für Elektronenemergieverlustspektroskopie, Diplomarbeit, Universität Karlsruhe (1988), unpublished.Google Scholar
  31. 30.b)
    Mensch, M.,Größenabhängigkeit der dielektrischen Eigenschaften kugel-förmiger Metallcluster, Diplomarbeit, Universität Karlsruhe (1990), unpublished.Google Scholar
  32. 31.
    Hall, R.B., Am. J. Phys.31, 696 (1963).Google Scholar
  33. 32.
    Melnyk, A.R. and Harrison, M.J., Phys. Rev. Lett.21, 85 (1968).Google Scholar
  34. 33.
    vom Felde, A., Sprösser-Prou, J., and Fink, J., Phys. Rev.B40, 10181 (1989).Google Scholar
  35. 34.
    Genzel, L., Martin, T., and Kreibig, U., Z. Phys.B21, 339 (1975).Google Scholar
  36. 35.
    Wu, King-Sum David and Beck, D.E., Phys. Rev.B36, 998 (1987).Google Scholar
  37. 36.
    Serra, LI, Garcias, F., Navarro, J., Barberán, N., Barranco, M., and Pi, M., Phys. Rev.B46, 9369 (1992).Google Scholar
  38. 37.
    Fink, J.,Advances in Electronics and Electron Physics, Vol. 75, p. 121, Academic Press. (1989).Google Scholar
  39. 38.
    Egerton, R.F.,Electron Energy Loss Spectroscopy in the Electron Microscope. Plenum Press, New York (1986).Google Scholar
  40. 39.
    Kreibig, u. and Zacharias, P. Z. Physik231, 128 (1970).Google Scholar
  41. 40.
    Das, P.C. and Gersten, J.I., Phys. Rev.B27, 5412 (1983).Google Scholar
  42. 41.
    Natta, M., Sol. State Commun.7, 823 (1969).Google Scholar
  43. 42.
    Manzke, R, Crezelius, G, and Fink, J, Phys. Rev. Lett51 1095 (1983).Google Scholar
  44. 43.
    vom Felde, A, Fink, J, Müller-Heinzerling, Th, Pflüger, J, Scheer, B, Linker, G, and Kaletta, D, Phys. Rev. Lett53, 922 (1984).Google Scholar
  45. 44.
    Sprösser-Prou, J., vom Felde, A., and Fink, J., Phys. Rev.40, 5799 (1989).Google Scholar
  46. 45.
    Daniels, A., v. Festenberg, C., Raether, H., and Zeppenfeld, K.,Springer Tracts in Modern Physics 54, 57, (1970).Google Scholar
  47. 46.
    Apell, P. and Ljungbert, Å., Sol. State Commun.46, 47 (1983).Google Scholar
  48. 47.
    Saito, S., Bertsch, G.F. and Tománek, D., Phys. Rev.B43, 6804 (1991).Google Scholar
  49. 48.
    Brechignac, C., Cahuzac, Ph., Kebaili, N., Leygnier, J., and Sarfati, A., Phys. Rev. Lett.68, 3916 (1992).Google Scholar
  50. 49.
    Malov, Yu, A, and Zaretzky, D.F., Phys. LettA177, 379 (1993).Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • R. v. Baltz
    • 1
  • M. Mensch
    • 1
  • H. Zohm
    • 1
  1. 1.Institut für Theorie der Kondensierten MaterieUniversität KarlsruheKarlsruheGermany

Personalised recommendations