Archiv der Mathematik

, Volume 66, Issue 1, pp 77–79 | Cite as

The automorphism group of a compact generalized quadrangle has finite dimension

  • Bernhild Stroppel
  • Markus Stroppel


Automorphism Group Finite Dimension Generalize Quadrangle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Burns andR. Spatzier, On topological Tits buildings and their classification. Publ. IHES65, 5–34 (1987).Google Scholar
  2. [2]
    T. Grundhöfer andN. Knarr, Topology in generalized quadrangles. Topology Appl.34, 139–152 (1990).Google Scholar
  3. [3]
    T. Grundhöfer, N. Knarr andL. Kramer, Flag-homogeneous compact connected polygons. Geom. Dedicata55, 95–114 (1995).Google Scholar
  4. [4]
    T. Grundhöfer andH. van Maldeghem, Topological polygons and affine buildings of rank three. Atti Sem. Mat. Fis. Univ. Modena38, 459–474 (1990).Google Scholar
  5. [5]
    L. Kramer, Compact Polygons. Doctoral dissertation. Tübingen 1994.Google Scholar
  6. [6]
    M. Stroppel, Lie theory for non-Lie groups. J. Lie Theory4, 257–284 (1995).Google Scholar
  7. [7]
    B. Stroppel andM. Stroppel, Connected orbits in topological generalized quadrangles. Preprint Nr. 1730, Fachbereich Mathematik der Technischen Hochschule, Darmstadt 1995.Google Scholar
  8. [8]
    E. van Kämpen, The structure of a compact connected group. Amer. J. Math.57, 301–308 (1935).Google Scholar

Copyright information

© Birkhäuser Verlag 1996

Authors and Affiliations

  • Bernhild Stroppel
    • 1
  • Markus Stroppel
    • 1
  1. 1.Fachbereich Mathematik der THDarmstadt

Personalised recommendations