Archiv der Mathematik

, Volume 66, Issue 1, pp 60–70

C0-groups andC0-semigroups of linear operators on hereditarily indecomposable Banach spaces

  • F. RÄbiger
  • W. J. Ricker


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Albrecht, Der spektrale Abbildungssatz für nichtanalytische Funktionalkalküle in mehreren Veränderlichen. Manuscripta Math.14, 263–277 (1974).Google Scholar
  2. [2]
    E. Albrecht andF. H. Vasilescu, Non-analytic local spectral properties in several variables. Czechoslovak Math. J.24, 430–443 (1974).Google Scholar
  3. [3]
    B. Bollobás, The spectral decomposition of compact Hermitian operators on Banach spaces. Bull. London Math. Soc.5, 20–36 (1973).Google Scholar
  4. [4]
    J. J. Buoni, R. Harte andT. Wickstead, Upper and lower Fredholm spectra. Proc. Amer. Math. Soc.66, 309–314 (1977).Google Scholar
  5. [5]
    I.Colojoară and C.Foias, Theory of generalized spectral operators. New York-London-Paris 1968.Google Scholar
  6. [6]
    H. R.Dowson, Spectral theory of linear operators. London Math. Soc. Monograph No. 12, New York 1978.Google Scholar
  7. [7]
    N.Dunford and J. T.Schwartz, Linear operators I. New York 1958.Google Scholar
  8. [8]
    V.Ferenczi, Operators on subspaces of hereditarily indecomposable Banach spaces. Preprint 1995.Google Scholar
  9. [9]
    W. T. Gowers andB. Maurey, The unconditional basic sequence problem. J. Amer. Math. Soc.6, 851–874 (1993).Google Scholar
  10. [10]
    E.Hewitt and K. A.Ross, Abstract harmonic analysis I, 2nd Edition. Berlin-Heidelberg-New York 1979.Google Scholar
  11. [11]
    E. Hille andR. S. Phillips, Functional analysis and semigroups. Amer. Math. Soc. Publ., Providence 1957.Google Scholar
  12. [12]
    T.Kato, Perturbation theory for linear operators, 2nd Printing. Berlin-Heidelberg-New York 1976.Google Scholar
  13. [13]
    U.Krengel, Ergodic theorems. Berlin-New York 1985.Google Scholar
  14. [14]
    J.Lindenstrauss and L.Tzafriri, Classical Banach spaces I. Sequence spaces. Berlin-Heidelberg-New York 1977.Google Scholar
  15. [15]
    H. P. Lotz, Uniform convergence of operators onL and similar spaces. Math. Z.190, 207–220 (1985).Google Scholar
  16. [16]
    P. Masani, Ergodic theorems for locally integrable semigroups of continuous linear operators on a Banach space. Adv. in Math.21, 202–228 (1976).Google Scholar
  17. [17]
    R.Nagel et al., One-parameter semigroups of positive operators. Berlin-Heidelberg-New York 1986.Google Scholar
  18. [18]
    R. Nagel andS. Huang, Spectral mapping theorems forC 0-groups satisfying non-quasi-analytic growth conditions. Math. Nachr.169, 207–218 (1994).Google Scholar
  19. [19]
    J.van Neerven, The adjoint of a semigroup of linear operators. Berlin-Heidelberg-New York 1992.Google Scholar
  20. [20]
    A.Pazy, Semigroups of linear operators and applications to partial differential equations. Berlin-Heidelberg-New York 1983.Google Scholar
  21. [21]
    A.Pietsch, Operator ideals. Amsterdam-New York-Oxford 1980.Google Scholar
  22. [22]
    W. J. Ricker, Well-bounded operators of type (B) in H.I. spaces. Acta Sci. Math. (Szeged)59, 475–488 (1994).Google Scholar
  23. [23]
    M.Zarrabi, Spectral synthesis and applications toC 0-groups. Preprint.Google Scholar

Copyright information

© Birkhäuser Verlag 1996

Authors and Affiliations

  • F. RÄbiger
    • 1
  • W. J. Ricker
    • 2
  1. 1.Mathematisches InstitutTübingen
  2. 2.School of MathematicsUniversity of New South WalesSydneyAustralia

Personalised recommendations