Advertisement

Zeitschrift für Physik B Condensed Matter

, Volume 80, Issue 3, pp 373–383 | Cite as

Understanding magnetic force microscopy

  • C. Schönenberger
  • S. F. Alvarado
Article

Abstract

Magnetic force microscopy is a new method for imaging ferromagnetic domains with a high lateral resolution (10 nm). In this paper we give the basic tip parameters that have to be taken into account to achieve a quantitative image interpretation. For the electrochemically otched polycrystalline iron, nickel and cobalt wires, the tip-apex domain is found to be oriented along the tip axis, because of shape anisotropy. The stray field emerging from the tip apex is comparable to the size of the tip saturation field. The effective domain lengthL determines the image formation: the force due to magnetization patterns of scales which are large compared toL follow the point-dipole approximation. In the opposite case, a single-pole model is more appropriate. While a cobalt tip can be treated as an isolated domain, for nickel and iron a net polarization in the tip wire induced by the front apex-domain has to be considered. A new analytical theory provides an overall understanding of the image formation and allows the determination of the magnetic field vector and the estimation of its magnitude from measurements.

Keywords

Cobalt Image Formation Shape Anisotropy Magnetic Field Vector Magnetic Force Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Martin, Y., Wickramasinghe, H.K.: Appl. Phys. Lett.50, 1455 (1987)Google Scholar
  2. 2.
    Saenz, J.J., Garcia, N., Grütter, P., Meyer, E., Heinzelmann, H., Wiesendanger, R., Rosenthaler, L., Hidber, H.R., Güntherodt, H.J.: J. Appl. Phys.62, 4293 (1987)Google Scholar
  3. 3.
    Binnig, G., Quate, C.F., Gerber, Ch.: Phys. Rev. Lett.56, 930 (1986)Google Scholar
  4. 4.
    Erlandsson, R., McClelland, G.M., Mate, C.M., Chiang, S.: J. Vac. Sci. Technol.A6(2), 266 (1988)Google Scholar
  5. 5.
    Rugard, D., Mamin, H.J., Erlandsson, Stern, J.E., Terris, B.D.: Rev. Sci. Instrum.59, 2337 (1988)Google Scholar
  6. 6.
    Meyer, G., Amer, N.M.: Appl. Phys. Lett.53, 2400 (1988)Google Scholar
  7. 7.
    Boef, A.J. den: Appl. Phys. Lett.55, 439 (1989)Google Scholar
  8. 8.
    Schönenberger, C., Alvarado, S.F.: Rev. Sci. Instrum.60, 3131 (1989)Google Scholar
  9. 9.
    Rugard, D., Mamin, H.J., Güthner, P.: Appl. Phys. Lett.55, 2588 (1989)Google Scholar
  10. 10.
    Göddenhenrich, T., Hartmann, U., Anders, M., Heiden, C.: J. Microsc.152, 527 (1988)Google Scholar
  11. 11.
    Martin, Y., Rugar, D., Wickramashinge, H.K.: Appl. Phys. Lett.52, 44 (1988)Google Scholar
  12. 12.
    Sarid, D., Iams, D., Weissenberger, V., Bell, L.S.: Opti. Lett.13, 1057 (1988)Google Scholar
  13. 13.
    Mamin, H.J., Rugard, D., Stern, J.E., Terris, B.D., Lambert, S.E.: Appl. Phys. Lett.53, 1563 (1988)Google Scholar
  14. 14.
    Abraham, D.W., Williams, C.C., Wickramasinghe, H.K.: Appl. Phys. Lett.53, 1446 (1988)Google Scholar
  15. 15.
    Grütter, P., Meyer, E., Heinzelmann, H., Rosenthaler, L., Hidber, H.R., Günterodt, H.J.: J. Vac. Sci. Technol.A6, 279 (1988)Google Scholar
  16. 16.
    Mamin, H.J., Rugard, D., Stern, J.E., Fontana, Jr., R.E., Kasiraj, P.: Appl. Phys. Lett.55, 318 (1989)Google Scholar
  17. 17.
    Grütter, P., Wadas, A., Meyer, E., Hidber, H.R., Güntherodt, H.J.: J. Appl. Phys.66, 6001 (1989)Google Scholar
  18. 18.
    Dürig, U., Gimzewski, J.K., Pohl, D.W.: Phys. Rev. Lett.57, 2403 (1986)Google Scholar
  19. 19.
    Martin, Y., Williams, C.C., Wickramasinghe, H.K.: J. Appl. Phys.61, 4723 (1987)Google Scholar
  20. 20.
    Schönenberger, C., Alvarado, S.F., Lambert, S.E., Sanders, I.L.: J. Appl. Phys. (to be published)Google Scholar
  21. 21.
    Lambert, S.E., Sanders, I.L., Patlach, A.M., Krounbi, M.T.: IEEE Trans. Magn.MAG-23, 3690 (1987)Google Scholar
  22. 22.
    Edelmann, H., Covault, M.: IEEE Trans. Magn.MAG-21, 2583 (1985)Google Scholar
  23. 23.
    High purity (99.99%) metal wires from Good Fellow Metals Ltd., Cambridge, EnglandGoogle Scholar
  24. 24.
    Siegenthaler, H., Christof, R.: Private communicationGoogle Scholar
  25. 25.
    Hobbs, P.C.D., Abraham, D.W., Wickramasinghe, H.K.: Appl. Phys. Lett.55, 2357 (1989)Google Scholar
  26. 26.
    Grütter, P.: PhD thesis, University of Basel, Switzerland (1989)Google Scholar
  27. 27.
    Hartmann, U.: Phys. Lett. A137, 475 (1981)Google Scholar
  28. 28.
    The thermal fluctuations in the cantilever correspond to the force\(\delta F_{th} = \sqrt {BkTC/\left( {\pi Qf_0 } \right)}\) (Ref. 8). We derive 10−12 N by inserting the following values: bandwidthB=100 Hz, temperatureT=300K, cantilever complianceC=10 N/m, cantilever quality factorQ=100, and cantilever resonance frequencyf 0=10 kHzGoogle Scholar
  29. 29.
    Baird, A.W., Chaurette, W.F., Lustig, C.D.: IEEE Trans. Magn.MAG-15, 1631 (1979)Google Scholar
  30. 30.
    Hoyt, R., Hern, D.E., Best, J.S., Hong, C.T., Horne, D.E.: J. Appl. Phys.55, 2241 (1984)Google Scholar
  31. 31.
    Karlquist, O.: Trans. Roy. Inst. Technol. Stockholm86, 1 (1954)Google Scholar
  32. 32.
    Ferromagnetic materials. Wohlfahrt, E.P., (ed.), Vol. 1, New York: Elsevier Science 1986Google Scholar
  33. 33.
    Hartmann, U.: J. Appl. Phys.64, 1561 (1988)Google Scholar
  34. 34.
    Wadas, A.: J. Magn. Magn. Mater.72, 295 (1988)Google Scholar
  35. 35.
    Saenz, J.J., Garcia, N., Slonczewski, J.C.: Appl. Phys. Lett.53, 1449 (1988)Google Scholar
  36. 36.
    Hartmann, U., Heiden, C.: J. Microsc.152, 281 (1988)Google Scholar
  37. 37.
    Hartmann, U.: Phys. Lett. A137, 475 (1989)Google Scholar
  38. 38.
    Hartmann, U.: Phys. Status Solidi115, 285 (1989)Google Scholar
  39. 39.
    Wadas, A.: J. Magn. Magn. Mater.78, 263 (1989)Google Scholar
  40. 40.
    Wadas, A., Grütter, P.: Phys. Rev. B39, 12013 (1989)Google Scholar
  41. 41.
    Mansuripur, A.: IEEE Trans. Magn.MAG-25, 3467 (1989)Google Scholar
  42. 42.
    Mansuripur, A., Giles, R.: IEEE Trans. Magn.MAG-24, 2326 (1988)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • C. Schönenberger
    • 1
  • S. F. Alvarado
    • 1
  1. 1.IBM Research DivisionZurich Research LaboratoryRüschlikonSwitzerland

Personalised recommendations