Advertisement

Zeitschrift für Physik B Condensed Matter

, Volume 62, Issue 2, pp 245–253 | Cite as

Influence of boundaries on dissipative structures in the Schlögl model

  • E. Schöll
Article

Abstract

The stationary spatial structures arising in the Schlögl model of first order nonequilibrium phase transitions are investigated for a one-dimensionals system of finite length.

The solution manifold and the occurring bifurcations are analysed systematically by varying the type of boundary condition, the boundary valuev R ,the system lengthL and the control parameterg. It is shown by plotting appropriate state diagrams that the bistability range of the infinite system is shifted to larger values ofg for small fixedv R and to smaller values ofg for largev R ,and that the shift depends sensitively uponL.

Keywords

Spectroscopy Boundary Condition Neural Network Manifold Phase Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schlögl, F.: Z. Phys.253, 147 (1972)Google Scholar
  2. 2.
    Nitzan, A., Ortoleva, P., Ross, J.: Faraday Symp. Chem. Soc.9, 241 (1974)Google Scholar
  3. 3.
    Magyari, E.: J. Phys. A15, L 139 (1982)Google Scholar
  4. 4.
    Schlögl, F., Escher, C., Berry, R.S.: Phys. Rev. A27, 2698 (1983)Google Scholar
  5. 5a.
    For reviews see e.g.: Schlögl, F.: Phys. Rep.62, 267 (1980)Google Scholar
  6. 5b.
    Haken, H.: Synergetics. 3rd Edn. Berlin, Heidelberg, New York: Springer 1983Google Scholar
  7. 5c.
    Albano, A.M., Abraham, N.B., Chyba, D.E., Mortelli, M.: Am. J. Phys.52, 161 (1984)Google Scholar
  8. 6.
    Hanson, M.: J. Chem. Phys.66, 5551 (1977)Google Scholar
  9. 7a.
    Jetschke, G.: Doctoral Thesis, Jena (1978)Google Scholar
  10. 7b.
    Jetschke, G.: Phys. Lett.72A, 265 (1979)Google Scholar
  11. 8a.
    Ibañez, J., Velarde, M.: Phys. Rev. A18, 750 (1978)Google Scholar
  12. 8b.
    Hemmer, P., Velarde, M.: Z. Phys. B — Condensed Matter31, 111 (1978)Google Scholar
  13. 8c.
    Fairén, V., Velarde, M.G.: Rep. Math. Phys.16, 421 (1979)Google Scholar
  14. 8d.
    Velarde, M.: Stability of Thermodynamics Systems. In: Lecture Notes in Physics. Casas-Vázques, J., Lebon, G. (eds.), Vol. 164, p. 248. Berlin, Heidelberg, New York: Springer 1982Google Scholar
  15. 9.
    Livshits, M.A., Gurija, G.T., Belintsev, B.N., Volkenstein, M.V.: J. Math. Biol.11, 295 (1981)Google Scholar
  16. 10.
    Messiah, A.: Quantum mechanics. Vol. I, Chap. III, § 12. Amsterdam: North Holland 1972Google Scholar
  17. 11.
    Büttiker, M., Thomas, H.: Phys. Rev. A24, 2635 (1981)Google Scholar
  18. 12.
    Ince, E.L.: Ordinary differential equations. p. 234. New York: Dover 1956Google Scholar
  19. 13.
    Kramer, L.: Z. Phys. B — Condensed Matter41, 357 (1981)Google Scholar
  20. 14.
    Schöll, E.: Z. Phys. B — Condensed Matter52, 321 (1983)Google Scholar
  21. 15.
    Schöll, E.: Proceedings of the 17th International Conference on the Physics of Semiconductors, San Francisco, 1984. Chadi, J.D., Harrison, W.A. (eds.), p. 1353. New York: Springer 1985Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • E. Schöll
    • 1
  1. 1.Institut für Theoretische Physik, Rheinisch-WestfälischeTechnische Hochschule AachenAachenFederal Republic of Germany

Personalised recommendations