Advertisement

Protoplasma

, Volume 163, Issue 1, pp 19–33 | Cite as

The fine structure of the lateral eyes ofNeocarus texanus Chamberlin and Mulaik, 1942 (Opilioacarida, Acari, Arachnida, Chelicerata)

  • T. Kaiser
  • G. Alberti
Article

Summary

Neocarus texanus, a “primitive” mite, bears two pairs of eyes, which are principally similar in ultrastructure. Each eye is covered externally by a cuticular cornea. It is underlain by flat sheath cells which send extensive processes into the retina. The retina is composed of distal and proximal cells. The 20 distal cells of the anterior eye are inversely orientated and form 10 disc-like rhabdoms. They represent typical retinula cells. Each rhabdom encloses the dendritic process of a neuron, the perikaryon of which is located outside the retina (proximal cells). The significance of this cell is not known. The retina is underlain by a crystalline tapetum. In the posterior eye 14 retinula cells form 7 rhabdoms in an arrangement similar to the anterior eye. The eyes of one side of the body are located within a capsule of pigment cells. Together the axons of the distal and proximal cells form the two optic nerves, one on each side of the body. The optic nerves leave the eyes anteriorly and terminate in two optic neuropils located in the brain.

From structural evidence it is concluded, that the resolution of the eyes must be rather low.

The peculiar proximal cells have not been observed previously in Acari. They probably resemble at best the eccentric cells and arhabdomeric cells of xiphosurans, scorpions, whip-scorpions and opilionids. Also, inverse retinae and tapeta of the present type have not been found in Acari until now, but are present in other Arachnida. Thus the eyes ofNeocarus texanus evidently represent a unique type within the Acari.

Keywords

Acari Arhabdomeric cells Crystalline tapetum Inverse eyes Neocarus texanus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberti G (1980 a) Zur Feinstruktur der Spermien und Spermiocytogenese der Milben (Acari): I. Anactinotrichida. Zool Jahrb Anat 104: 77–138Google Scholar
  2. — (1980 b) Zur Feinstruktur der Spermien und Spermiocytogenese der Milben (Acari): II. Actinotrichida. Zool Jahrb Anat 104: 144–203Google Scholar
  3. — (1984) The contribution of comparative spermatology to problems of acarine systematics. In: Griffiths DA, Bowman CE (eds) Acarology VI, vol 1. Ellis Horwood, Chichester, pp 479–490Google Scholar
  4. — (1991) Spermatology in the Acari: systematical and functional implications. In: Murphy PW, Schuster R (eds) The Acari: reproduction, development and life-history strategies. Chapman and Hall, London (in press)Google Scholar
  5. —, Fernandez NA (1988) Fine structure of a secondarily developed eye in the freshwater moss miteHydrozetes lemnae (Coggi, 1899) (Acari: Oribatida). Protoplasma 146: 106–117Google Scholar
  6. — — (1990) Aspects concerning the structure and function of the lenticulus and clear spot of certain oribatids (Acari, Oribatida). Acarologia 31: 65–72Google Scholar
  7. Ali MA (ed) (1984) Photoreception and vision in invertebrates. Plenum, New YorkGoogle Scholar
  8. Barlow RB, Bolanowski, SJ, Brachmann ML (1977) Efferent optic nerve fibres mediate circadian rhythms in theLimulus eye. Science 197: 86–89Google Scholar
  9. Binnington KC (1972) The distribution and morphology of possible photoreceptors in eight species of ticks (Ixodoidea). Z Parasitenk 40: 321–332Google Scholar
  10. Blest AD (1985) The fine structure of spider photoreceptors in relation to function. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York Tokyo, pp 79–102Google Scholar
  11. Burr AH (1984) Evolution of eyes and photoreceptor organelles in the lower phyla. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York, pp 131–178Google Scholar
  12. El Shoura SM (1988) Fine structure of the sight organs in the tickHyalomma (Hyalomma) dromedarii (Ixodoidea: Ixodidae). Exp Appl Acarol 4: 109–116Google Scholar
  13. Evans GO, Sheals JG, Macfarlane D (1961) The terrestrial Acari of the British Isles. An introduction to their morphology, biology and classification. British Museum, LondonGoogle Scholar
  14. Fahrenbach WH (1969) The morphology of the eyes ofLimulus. II. Ommatidia of the compound eye. Z Zellforsch 93: 451–483Google Scholar
  15. — (1970) The morphology of theLimulus visual system. III. The lateral rudimentary eye. Z Zellforsch 105: 303–316Google Scholar
  16. — (1971) The morphology of theLimulus visual system. IV. The lateral optic nerve. Z Zellforsch 114: 532–545Google Scholar
  17. — (1975) The visual system of the horseshoe crabLimulus polyphemus. Int Rev Cytol 41: 285–349Google Scholar
  18. Fleissner G, Schliwa M (1977) Neurosecretory fibres in the median eyes of the scorpion,Androctonus australis L. Cell Tissue Res 178: 189–198Google Scholar
  19. Grandjean F (1928) Sur un oribatide pourvu d'yeux. Bull Soc Zool France 53: 235–242Google Scholar
  20. — (1936) Un acarien synthétique:Opilioacarus segmentatus With. Bull Soc Hist Nat Afr Nord 27: 413–444Google Scholar
  21. — (1961) Nouvelles observations sur les oribates (lre Sér.). Acarologia 3: 206–231Google Scholar
  22. Hartline HK, Ratliff F (1972) Inhibitory interaction in the retina ofLimulus. In: Fuortes MGF (ed) Physiology of photoreceptor organs. Springer, Berlin Heidelberg New York, pp 381–447Google Scholar
  23. Homann H (1971) Die Augen der Araneae. Anatomie, Ontogenie und Bedeutung für die Systematik (Chelicerata, Arachnida). Z Morphol Tiere 69: 201–272Google Scholar
  24. Ivanov VP, Leonovich SA (1983) Sensory organs. In: Balashov YS (ed) An atlas of ixodid tick ultrastructure. Spec Publ Entomol Soc Am: 191–220Google Scholar
  25. Krantz GW (1978) A manual of acarology, 2nd edn. Oregon State University Book Stores, Corvallis, pp 1–509Google Scholar
  26. Land MF (1985) Morphology and optics of spider eyes. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York Tokyo, pp 53–78Google Scholar
  27. Lindquist EE (1984) Current theories on the evolution of major groups of Acari and on their relationships with other groups of Arachnida, with consequent implications for their classification. In: Griffiths DA, Bowman CE (eds) Acarology VI, vol l. Ellis Horwood, Chichester, pp 28–62Google Scholar
  28. Meyer-Rochow VB (1978) Aspects of the functional anatomy of the eyes of the whip-scorpionThelyphonus caudatus (Chelicerata: Arachnida) and a discussion of their putative performance as photoreceptors. J R Soc New Zealand 17: 325–341Google Scholar
  29. Mills LR (1974) Structure of the visual system of the two-spotted spider mite,Tetranychus urticae. J Insect Physiol 20: 795–808Google Scholar
  30. Mischke U (1981) Die Ultrastruktur der Lateralaugen und des Medianauges der SüßwassermilbeHydryphantes ruber (Acarina: Parasitengona). Entomol Gen 7: 141–156Google Scholar
  31. Munoz-Cuevas A (1984) Photoreceptor structures and vision in arachnids and myriapods. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York, pp 335–399Google Scholar
  32. Nuzzaci G (1982) Osservazioni ultrastrutturali sugli organi fotorecettori delTetranychus urticae Koch. Mem Soc Entomol Ital (Genova) 60: 269–272Google Scholar
  33. Paulus HF (1979) Eye structure and the monophyly of the Arthropoda. In: Gupta AP (ed) Arthropod phylogeny. Van Nostrand Reinhold, New York, pp 299–283Google Scholar
  34. Phillis WA, Cromroy HL (1977) The microanatomy of the eye ofAmblyomma americanum (Acari: Ixodidae) and resultant implications of its structure. J Med Entomol 13: 685–698Google Scholar
  35. Richardson KC, Jarett L, Finke EH (1960) Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol 35: 313–323Google Scholar
  36. Schliwa M (1979) The retina of the phalangid,Opilio ravennae, with particular reference to arhabdomeric cells. Cell Tissue Res 204: 473–495Google Scholar
  37. Schliwa M, Fleissner F (1979) Arhabdomeric cells of the median eye retina of scorpions. I. Fine structural analysis. J Comp Physiol 130: 265–270Google Scholar
  38. Van der Hammen L (1966) Studies on Opilioacarida (Arachnida) I. Description ofOpilioacarus texanus (Chamberlin & Mulaik) and revised classification of the genera. Zool Verh Leiden 86: 1–80Google Scholar
  39. — (1977) A new classification of Chelicerata. Zool Meded Leiden 51: 307–319Google Scholar
  40. — (1983) New notes on Holothyrida (Anactinotrichid mites). Zool Verh Leiden 207: 1–48Google Scholar
  41. — (1989) An introduction to comparative arachnology. SPB, Den Haag, pp 1–576Google Scholar
  42. Vitzthum C von (1943) Acarina. In: Bronns Klassen und Ordnungen des Tierreichs, vol 5, IV, 5. Akademische Verlagsgesellschaft, LeipzigGoogle Scholar
  43. Wachmann E (1975) Feinstruktur der Lateralaugen einer räuberischen Milbe (Microcaeculus) (Acari: Prostigmata: Caeculidae). Entomol Germ 1: 300–307Google Scholar
  44. —, Haupt J, Richter S, Coineau Y (1974) Die Medianaugen vonMicrocaeculus (Acari, Prostigmata, Caeculidae). Z Morphol Tiere 79: 199–213Google Scholar
  45. Waterman TH (1982) Fine structure and turnover of photoreceptor membranes. In: Westfall JA (ed) Visual cells in evolution. Raven, New York, pp 23–41Google Scholar
  46. With CJ (1904) The Notostigmata, a new suborder of Acari. Vidensk Medd Naturk Foren Copenhagen 1904: 137–192Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • T. Kaiser
    • 1
  • G. Alberti
    • 1
  1. 1.Zoologie I (Morphologie/Ökologie)Universität HeidelbergHeidelbergFederal Republic of Germany

Personalised recommendations