Archives of Virology

, Volume 64, Issue 3, pp 247–256 | Cite as

Studies on poxvirus infections in irradiated animals

  • G. T. Werner
  • U. Jentzsch
  • E. Metzger
  • J. Simon
Original Papers


If rabbits were given total body irradiation and infected with vaccinia virus (strain Elstree) a severe disease developed with a viraemia lasting up to 12 days. The clearance of the virus from the peripheral blood was severely impaired by x-ray doses above 800 R. The attenuated vaccinia virus strain MVA did not turn virulent, if it was injected to irradiated rabbits. With caution it can be assumed that live vaccines, containing attenuated viruses, may be given to immunosuppressed persons. Rats are not susceptible to ectromelia-virus (mouse-poxvirus); overt clinical symptoms, however, with a mortality of 30 per cent developed in irradiated rats. This proofs that specific poxviruses can be transferred to another species. As the experimental conditions are unnatural, this may occur only rarely in immunosuppressed persons. After intracerebral infection of Balb-C-mice with low doses of vaccinia virus two types of infection were seen: 1. a severe cytocidal infection of leptomeninges, chorioid plexus and vessels; 2. a noncytocidal, latent infection of glial cells and neurons. Several animals developed a picture resembling experimental allergic encephalomyelitis. It seems that irradiation altered the antigenic conditions of the cytoplasmic membranes in non-cytocidally infected cells. The model might explain some processes in the pathogenesis of demylinating diseases.


Vaccinia Virus Encephalomyelitis Latent Infection Vaccinia Total Body Irradiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, R. D.: A comparison of the morphology of the human demyelinating disease and experimental allergic encephalomyelitis. In:Kies, M. W., Alford, E. C. (eds.), Allergic encephalomyelitis, 183–209. Springfield, Ill.: Ch. C Thomas 1959.Google Scholar
  2. 2.
    Anderson, R. E., Warner, N. L.: Ionizing radiation and immune response. Adv. Immunol.24, 216–320 (1976).Google Scholar
  3. 3.
    Bandlow, G., Fischer, W., Thompssen, R.: Gesteigerte Immunogenität von Plasmamembranen vacciniainfizierter BHK-Zellen. Arch. ges. Virusforsch.38, 63–71 (1973).Google Scholar
  4. 4.
    Blinzinger, K., Hochstein-Mintzel, V., Anzill, A. P.: Experimental vaccinia virus meningoencephalitis in adult albino mice. Acta neuropath. (Berl.)40, 193 to 205 (1977).Google Scholar
  5. 5.
    Bøyum, A.: Separation of leucocytes from blood and bone-marrow. Scand. J. clin. Lab. Invest.21, suppl. 97, 1–12 (1968).Google Scholar
  6. 6.
    Burnet, F. M., Lush, D.: Inapperent (subclinical) infection of the rat with the virus of infectious ectromelia of mice. J. Path. Bact.42, 469–480 (1936).Google Scholar
  7. 7.
    Downie, A. W., Kempe, C. H.: Poxviruses. In:Lenette, E. H., Schmidt, N. J. (eds.), Diagnostic procedures for viral and rickettsial infections, 4th ed., 314–316. New York: American Health Association 1969.Google Scholar
  8. 8.
    Dupuy, J. M., Levey-Leblond, E., Le Prevost, C.: Immunopathology of mouse hepatitis virus type 3 infection. J. Immunol.114, 226–230 (1975).Google Scholar
  9. 9.
    Ginsberg, A. M., Johnson, K. P.: Vaccinia virus meningitis in mice after intracerebral inoculation. Infect. Immun.13, 1221–1227 (1976).Google Scholar
  10. 10.
    Harter, D. H., Choppon, P. W.: Possible mechanisms in the pathogenesis of “postinfectious” incephalomyelitis. In:Rowland, L. P. (ed.), Immunological disorders of the nervous system, 342–357. Baltimore: The Williams and Wilkins Co. 1971.Google Scholar
  11. 11.
    Hirsch, M. S., Proffitt, M. R.: Autoimmunity in viral infections. In:Notkins, A. L. (ed.), Viral immunology and immunopathology, 419–434. New York: Academic Press 1975.Google Scholar
  12. 12.
    Hochstein-Mintzel, V.: Infektionsdosis, Inkubationszeit sowie Morbiditätsrate bei Viruserkrankungen unter besonderer Berücksichtigung der Strahlenbelastung. Rep. to the Min. of Def. (Insan), (1979).Google Scholar
  13. 13.
    Hochstein-Mintzel, V., Hänichen, T., Huber, H. C., Stickl, H.: Vaccinia- and variolaprotektive Wirkung des modifizierten Vaccinia-Stammes MVA bei intramuskulärer Immunisierung. Zbl. Bakt. Hyg., I. Abt. Orig.A230, 283–297 (1975).Google Scholar
  14. 14.
    Jentzsch, U., Rau, G., Weitzenegger, E.: Dose measurements in a dummy for the irradiation of test animals in a reactor. Kerntechn.20, 61–69 (1978).Google Scholar
  15. 15.
    Kundin, W. D.: A pilot study to investigate the effects of x-irradiation on the course of pathogenesis of viral disease as studied by immunofluorescence. TID-20 774 (1964).Google Scholar
  16. 16.
    Mayr, A.: Experimentelle Arbeiten über das hämagglutinierende Prinzip bei den Tierpockenviren. Arch. ges. Virusforsch.6, 439–481 (1955).Google Scholar
  17. 17.
    Petersen, P. O., Berenzina, O. N., Kozlova, J. A.: The effect of ionizing radiation on virus infection and antivirus immunity. USAEC Report, AEC-tr-5579 (1963).Google Scholar
  18. 18.
    Quintans, J., Kaplan, D.: Differential effects of sublethal irradiation on the humoral immune response of adult and neonatal mice. Cell. Immunol.40, 236 to 242 (1978).Google Scholar
  19. 19.
    Shafikova, R. A., Marennikova, S. S.: Comparative studies on the properties of variola virus strain II. Acta virol.15, 321–323 (1971).Google Scholar
  20. 20.
    Simon, J., Hochstein-Mintzel, V., Huber, H. C.: Suppression der experimentellen allergischen Encephalomyelitis durch Vaccinia-virus induzierte Hirnantikörper. Z. Immun. Forsch.152, 23–35 (1977).Google Scholar
  21. 21.
    Simon, J., Werner, G. T.: Vaccinia Virus infection of the CNS in x-irradiated mice. Infect. Immun.25, 1035–1042 (1979).Google Scholar
  22. 22.
    Stickl, H., Hochstein-Mintzel, V., Mayr, A., Huber, H. C., Schäfer, H., Holzner, A.: MVA-Stufenimpfung gegen Pocken, Deutsch. med. Wschr.99, 2386–2392 (1974).Google Scholar
  23. 23.
    Svet-Moldavskaya, I. A., Chimishkyan, K. I.: “Vaccinial disease” of mice. Acta Virol.13, 557–559 (1969).Google Scholar
  24. 24.
    Tagliaferro, W. H., Tagliaferro, L. G., Jaroslow, B. N.: Radiation and immune mechanisms. New York: Academic Press 1964.Google Scholar
  25. 25.
    Tarro, G., Sabin, A. B.: Increase in preexisting cellular antigencombining groups at different times after infection with different viruses. Proc. Nat. Acad. Sci. Wash.67, 631–737 (1970).Google Scholar
  26. 26.
    Ueda, Y., Ito, M., Tagaya, I.: A specific surface antigen induced by poxvirus. Virology39, 180–182 (1969).Google Scholar
  27. 27.
    Wustrow, T., Werner, G. T., Wagner, N., Messerschmidt, O.: Untersuchungen über Kombinationsschäden. Immunität und Antikörperspiegel bei Kaninchen, die durch Ganzkörperbestrahlung in Kombination mit einer Hautwunde behandelt wurden. Strahlenther. (in press).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • G. T. Werner
    • 1
    • 2
    • 3
    • 4
    • 5
  • U. Jentzsch
    • 1
    • 2
    • 3
    • 4
  • E. Metzger
    • 1
    • 2
    • 3
    • 4
  • J. Simon
    • 1
    • 2
    • 3
    • 4
  1. 1.Bavarian Vaccination CentreMunichGermany
  2. 2.Forschungsreaktor Neuherberg, Gesellschaft für Strahlen- und Umweltforschung mbHNeuherberg/MunichGermany
  3. 3.Laboratory for Experimental Radiation ResearchNeuherberg/MunichGermany
  4. 4.Max Planck Institute for PsychiatryMunichGermany
  5. 5.Bayrische LandesimpfanstaltMünchen 95Germany

Personalised recommendations