Advertisement

Protoplasma

, Volume 153, Issue 1–2, pp 14–23 | Cite as

The flagellar developmental cycle in algae

Two types of flagellar development in uniflagellated algae
  • Kirsten Heimann
  • J. Benting
  • Stefanie Timmermann
  • M. Melkonian
Article

Summary

Flagellar development during cell division was studied by light microscopy in three taxa of uniflagellated algae,Pedinomonas tuberculata (Chlorophyta),Monomastix spec. (Chlorophyta), andPseudopedinella elastica (Chromophyta). As shown by electron microscopy during interphaseM. spec, andP. elastica contain a mature, non-functional second basal body, andP. tuberculata contains an immature (i.e., shorter) non-functional second basal body. Two different types of flagellar development were observed in the three taxa: inP. tuberculata the parental flagellum is transferred to one of the progeny cells, whereas the other progeny cell receives a newly formed flagellum that grows from the second non-functional basal body. InM. spec. andP. elastica the parental flagellum is either completely retracted (P. elastica) or partially retracted and autotomized (M. spec); each dividing cell develops two new flagella (from two newly formed basal bodies) which are distributed to the two progeny cells. The uniflagellated condition in algae can thus be attained by two completely different mechanisms: a non-functional second basal body is either the younger (no. 2; inP. tuberculata and otherChlorophyta) or the older (no. 1; inP. elastica and presumably otherChromophyta) of the two basal bodies.

Keywords

Pedinomonas tuberculata Monomastix spec Pseudopedinella elastica Flagellar developmental cycle Light microscopy Uniflagellated algae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beech PL, Wetherbee R, Pickett-Heaps JD (1988) Transformation of the flagella and associated flagellar components during cell division in the coccolithophoridPleurochrysis carterae. Protoplasma 145: 37–46Google Scholar
  2. Beech PL, Wetherbee R (1990) Direct observations on flagellar transformation inMallomonas splendens (Synurophyceae). J Phycol (in press)Google Scholar
  3. Belcher JH (1965) An investigation of three clones ofMonomastix Scherffel by light microscopy. Nova Hedwigia 9: 73–82Google Scholar
  4. Ettl H (1983) Chlorophyta I. Phytomonadina. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa. G Fischer, StuttgartGoogle Scholar
  5. —, Manton I (1964) Die feinere Struktur vonPedinomonas minor Korschikoff. Nova Hedwigia 8: 421–451Google Scholar
  6. Farmer MA, Triemer RE (1988) Flagellar systems in the euglenoid flagellates. BioSystems 21: 283–291Google Scholar
  7. Gaffal KP (1988) The basal body-root complex ofChlamydomonas reinhardtii during mitosis. Protoplasma 143: 118–129Google Scholar
  8. Heimann K, Reize IB, Melkonian M (1989) The flagellar developmental cycle in algae: flagellar transformation inCyanophora paradoxa (Glaucocystophyceae). Protoplasma 148: 106–110Google Scholar
  9. Manton I (1967) Electron microscopical observations on a clone ofMonomastix Scherffel in culture. Nova Hedwigia 14: 1–11Google Scholar
  10. —, Parke M (1960) Further observations on small green flagellates with special reference to possible relatives ofChromulina pusilla Butcher. J Mar Biol Assoc UK 39: 275–298Google Scholar
  11. —, von Stosch A (1966) Observations on the fine structure of the male gamete of the marine centric diatomLithodesmium undulatum. J R Microsc Soc 85: 119–134Google Scholar
  12. Mattox KR, Stewart KD (1984) Classification of the green algae: a concept based on comparative cytology. In: Irvine DEG, John DM (eds) The systematics of green algae. Academic Press, New York, 29–72Google Scholar
  13. McFadden GI, Melkonian M (1986) Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. Phycologia 25: 551–557Google Scholar
  14. Melkonian M (1975) The fine structure of the zoospores ofFritschiella tuberosa Iyeng. (Chaetophorineae, Chlorophyceae) with special reference to the flagellar apparatus. Protoplasma 86: 391–404Google Scholar
  15. — (1982) Effect of divalent cations on flagellar scales in the green flagellateTetraselmis cordiformis. Protoplasma 111: 221–233Google Scholar
  16. — (1990) Pedinomonadales. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of protoctista. Jones & Bartlett, Boston (in press)Google Scholar
  17. —, Reize IB, Preisig HR (1987) Maturation of a flagellum/basal body requires more than one cell cycle in algal flagellates: studies onNephroselmis olivacea (Prasinophyceae). In: Wiessner W, Robinson DG, Starr RC (eds) Algal development. Molecular and cellular aspects. Springer, Berlin Heidelberg New York Tokyo, pp 102–113Google Scholar
  18. Moestrup Ø (1982) Flagellar structure in algae: a review with new observations particularly on the Chrysophyceae, Phaeophyceae (Fucophyceae), Euglenophyceae andReckertia. Phycologia 21: 427–528Google Scholar
  19. —, Hori T (1989) Ultrastructure of the flagellar apparatus inPyramimonas octopus (Prasinophyceae). II. Flagellar roots, connecting fibers, and numbering of individual flagella in green algae. Protoplasma 148: 41–56Google Scholar
  20. Norris RE (1980) Prasinophytes. In: Cox ER (ed) Developments in mavine biology, vol 2, phytoflagellates. Elsevier-North Holland, New York, 85–145Google Scholar
  21. Pickett-Heaps JD, Ott DW (1974) Ultrastructural morphology and cell division inPedinomonas. Cytobios 11: 41–58Google Scholar
  22. Quader H, Glas R (1984) Geißelregeneration beiChlamydomonas reinhardtii. BiuZ 14: 125–127Google Scholar
  23. Reize IB, Melkonian M (1989) A new way to investigate living flagellated/ciliated cells in the light microscope: immobilization of cells in agarose. Botanica Acta 102: 145–151Google Scholar
  24. Schlösser UG (1984) Sammlung von Algenkulturen Göttingen: additions to the collection since 1982. Ber Deutsch Bot Ges 97: 465–475Google Scholar
  25. Sleigh MA (1988) Flagellar root maps allow speculative comparisons of root patterns and of their ontogeny. BioSystems 21: 277–282Google Scholar
  26. Wetherbee R, Platt SJ, Beech PL, Pickett-Heaps JD (1988) Flagellar transformation in the heterokontEpipyxis pulchra (Chrysophyceae): direct observation using image enhanced light microscopy. Protoplasma 145: 47–54Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Kirsten Heimann
    • 1
  • J. Benting
    • 1
  • Stefanie Timmermann
    • 1
  • M. Melkonian
    • 1
  1. 1.Botanisches InstitutUniversität zu KölnKöln

Personalised recommendations