Monatshefte für Mathematik

, Volume 112, Issue 1, pp 1–42 | Cite as

Describing functions: Atomic decompositions versus frames

  • Karlheinz Gröchenig
Article

Abstract

The theory of frames and non-orthogonal series expansions with respect to coherent states is extended to a general class of spaces, the so-called coorbit spaces. Special cases include wavelet expansions for the Besov-Triebel-Lizorkin spaces, Gabortype expansions for modulation spaces, and sampling theorems for wavelet and Gabor transforms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Part I. Comm. Pure Appl. Math.14, 187–214 (1961).Google Scholar
  2. [BA1]Bastiaans, M. J.: Signal description by means of local frequency spectrum. SPIE373, 49–62 (1981).Google Scholar
  3. [BA]Battle, G.: Heisenberg proof of the Balian-Low theorem. Lett. Math. Phys.15, 175–177 (1988).Google Scholar
  4. [BO]Bohnké, G.: Treillis d'ondellettes associés aux groupes de Lorentz. (Preprint.)Google Scholar
  5. [CMS]Coifman, R., Meyer, Y., Stein, E.: Some new function spaces and their applications to harmonic analysis. J. Funct. Anal.62, 304–335 (1985).Google Scholar
  6. [CR]Coifman, R. Rochberg, R.: Representation theorems for holomorphic and harmonic functions. Astérisque77, 11–65 (1980).Google Scholar
  7. [D1]Daubechies, I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory36, 961–1005 (1990).Google Scholar
  8. [D2]Daubechies, I.: Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math.41, 909–996 (1988).Google Scholar
  9. [DG]Daubechies, I., Grossmann, A.: Frames in the Bargmann space of entire functions. Comm. Pure Appl. Math.16, 151–169 (1988).Google Scholar
  10. [DGM]Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys.27, 1271–1283 (1986).Google Scholar
  11. [DS]Duffin, R., Schaeffer, A.: A class of nonharmonic Fourier series Trans. Amer. Math. Soc.72, 341–366 (1952).Google Scholar
  12. [DM]Duflo, M., Moore, C.C.: On the regular representation of a non-unimodular locally compact group. J. Funct. Anal.21, 209–243 (1976).Google Scholar
  13. [F1]Feichtinger, H. G.: Banach convolution algebras of Wiener's type. In: Functions, Series, Operators. 509–524. Proc. Conf., Budapest 1980. Amsterdam: North Holland. 1983.Google Scholar
  14. [F2]Feichtinger, H. G.: Atomic characterizations of modulation spaces through Gabor type representations. Rocky Mountain J. Math.19, 113–126 (1989).Google Scholar
  15. [F3]Feichtinger, H. G.: Modulation spaces on locally compact abelian groups. Techn. Report. University of Vienna, 1983.Google Scholar
  16. [FG1]Feichtinger, H. G., Gröchenig, K.: A unified approach to atomic decompositions via integrable group representations. In: Proc. Conf. “Functions Spaces and Applications”. (M. Cwikel et al. eds.) pp. 52–73. Lect. Notes Math. 1302, Berlin-Heidelberg-New York: Springer. 1988.Google Scholar
  17. [FG2]Feichtinger, H. G., Gröchenig, K.: Banach Spaces related to integrable group representations and their atomic decompositions I. J. Funct. Anal.86, 307–340 (1989).Google Scholar
  18. [FG3]Feichtinger, H. G., Gröchenig, K.: Banach Spaces related to integrable group representations and their atomic decompositions II. Mh. Math.108, 129–148 (1989).Google Scholar
  19. [FJ1]Frazier, M., Jawerth, B.: Decompositon of Besov spaces. Indiana Univ. Math. J.34, 777–799 (1985).Google Scholar
  20. [FJ2]Frazier, M., Jawerth, B.: The φ-transform and decompositions of distribution spaces. In: Proc. Conf. “Functions Spaces and Applications” (Cwikel, M., et al., eds.) Lect. Notes Math. 1302. Berlin-Heidelberg-New York: Springer. 1988.Google Scholar
  21. [FJ3]Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal.93, 34–170 (1990).Google Scholar
  22. [FS]Folland, G., Stein, E.: Hardy Spaces on Homogeneous Groups. Princeton: Univ. Press. 1982.Google Scholar
  23. [G1]Gröchenig, K.: Analyses multi-échelles et bases d'ondelettes. C. R. Acad. Sci. Paris305, 13–15 (1987).Google Scholar
  24. [G2]Gröchenig, K.: Unconditional bases in translation and dilation invariant function spaces on ℝn. In: Constructive Theory of Functions. Proc. Conf. Varna 1987 (Sendov, B. et al., eds.), pp. 174–183. Bulgarian Acad. Sci. 1988.Google Scholar
  25. [GMP]Grossmann, A., Morlet, J., Paul, T.: Transforms associated to square integrable group representations I. J. Math. Phys.26, 2473–2479 (1985).Google Scholar
  26. [HW]Heil, C. E., Walnut, D. F.: Continuous and discrete wavelet transforms. SIAM Review31, 628–666 (1989).Google Scholar
  27. [JPR]Janson, S., Peetre, J., Rochberg, R.: Hankel forms and the Fock space. Revista Math. Iberoam.3, 61–138 (1987).Google Scholar
  28. [KS]Klauder, J. R., Skagerstam, B. S.: Coherent States. Singapore: World Scientific. 1985.Google Scholar
  29. [LM]Lemarie, P. G., Meyer, Y.: Ondelettes et bases hilbertiennes. Revista Math. Iberoam.2, 1–18 (1986).Google Scholar
  30. [L]Luecking, D.: Representation and duality in weighted spaces of analytic functions. Indiana Univ. Math. J.34, 319–336 (1985).Google Scholar
  31. [M]Meyer, Y. Ondelettes, Vol.I. Paris: Hermann. 1990.Google Scholar
  32. [MA]Mallat, S.: Multiresolution approximation and wavelet bases ofL 2. Trans. Amer. Math. Soc.315, 69–87 (1989).Google Scholar
  33. [RT]Ricci, F., Taibleson, M.: Boundary values of harmonic functions in mixed norm spaces and their atomic structure. Ann. Scuola Norm. Sup. Pisa, Ser. IV,10, 1–54 (1983).Google Scholar
  34. [R]Rochberg, R.: Decomposition theorems for Bergman spaces and their applications. In: Operators and Function Theory. (Powers, S. C., ed.) Reidel. 1985.Google Scholar
  35. [SV]Sharpley, R., De Vore, R.: Maximal Functions Measuring Smoothness. Memoirs Amer. Math. Soc.293, (1984).Google Scholar
  36. [S]Stettinger, F.: Banachräume von Funktionen und Oszillation. Ph.D. Thesis. Univ. of Vienna. 1983.Google Scholar
  37. [T]Triebel, H.: Characterizations of Besov-Hardy-Sobolev-spaces: A unified approach. J. Approx. Theory52, 162–203 (1988).Google Scholar
  38. [T2]Triebel, H.: Theory of function Spaces. Leipzig: Akad. Verlagsges. 1983.Google Scholar
  39. [Y]Young, R. M.: An Introduction to Nonharmonic Fourier Series. New York: Academic Press. 1980.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Karlheinz Gröchenig
    • 1
  1. 1.Department of Mathematics U-9University of ConnecticutStorrsUSA

Personalised recommendations