Advertisement

Journal of Superconductivity

, Volume 7, Issue 5, pp 787–791 | Cite as

Orbital pairing effects in fullerenes

  • F. V. Kusmartsev
Article
  • 18 Downloads

Abstract

We propose a theory of superconductivity for a crystal having multiple band structure. The theory is valid for the parameterδ(kF)/ħω≪1 when the splitting between bandsδ(k F ) is small in comparison with the phonon frequencyħω. The theory may be applicable to the doped fullerenes where it is widely supposed that pairing occurs through high-energy intramolecular phonons. As in semiconductors, the bunch of bands is treated by ascribing the highest spin to electrons. We derive the analytic expression for the critical temperature, which strongly depends on the value of the total spin of the Cooper pair, which may be equal toY=0,1,.... In all cases the order parameter is a vector with components proportional to spherical harmonics and at the same time the superconducting gap has no zeros. The data may be fitted to doped fullerenes, if the superconductivity arises fromd-pairing.

Key words

Fullerenes superconducting pairs orbital momenta critical temperature superconducting gap order parameter topological defects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. F. Hebardet al. Nature (London) 350, 600 (1991).Google Scholar
  2. 2.
    M. J. Rosseinskyet al., Phys. Rev. Lett. 66, 2830 (1991).Google Scholar
  3. 3.
    A. R. Edmonds,Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1957), p. 85.Google Scholar
  4. 4.
    A. P. Yutsis, I. B. Levinson, and V. V. Vanagas,Mathematical Tools of the Theory of Angular Momentum (Akad. Nauk Lit. SSR, Vilnius, 1960).Google Scholar
  5. 5.
    S. Chakravarty and S. Kivelson, UCLA, preprint (1992).Google Scholar
  6. 6.
    G. Baskaran and E. TosattiCurr. Sci. 61, 33 (1991).Google Scholar
  7. 7.
    F. Mehran, A. J. Shell-Sorokin, and C. A. BrownPhys. Rev. B. 46, 8579 (1992).Google Scholar
  8. 8.
    M. Schluter, M. Lannoo, M. Needels, G. Baraff, and D. Tomanek,Phys. Rev. Lett. 68, 526 (1992);J. Phys. Chem. Solids 53, 1473 (1992).Google Scholar
  9. 9.
    C. M. Varma, J. Zaanen, and K. Raghavachari,Science 254, 989 (1991).Google Scholar
  10. 10.
    A. P. Ramirez, A. R. Kortan, M. J. Rosseinsky, S. J. Duclos, A. M. Mujsee, R. C. Haddon, D. W. Murphy, A. V. Makhija, S. M. Zahurak, and K. B. Lyons.Phys. Rev. Lett. 68, 1058 (1992).Google Scholar
  11. 11.
    Y. J. Uemura, A. Keren, L. P. Le. G. M. Luke, S. Donovan, G. Gruener, and K. Holczer,Nature (London) 352, 605 (1991).Google Scholar
  12. 12.
    B. Kresin,Phys. Lett A 122, 434 (1987).Google Scholar
  13. 13.
    R. W. Lof, M. A. van Veenendal, B. Koopmans, H. T. Jonkman, and G. A. Sawatzky,Phys. Rev. Lett. 68, 3924 (1992).Google Scholar
  14. 14.
    T. Takahashi, S. Suzuki, T. Morikawa, H. Katayama-Yoshida, S. Hasegawa, H. Inokuchi, K. Seki, K. Kikuchi, S. Suzuki, K. Ikemoto, and Y. Achiba,Phys. Rev. Lett. 68, 1232 (1992).Google Scholar
  15. 15.
    E. J. Mele and S. C. Erwin,Phys. Rev. B 47, 2948 (1992).Google Scholar
  16. 16.
    F. V. Kusmartsev, E. I. Rashba,Sov. Phys. JETP 59, 668 (1984);Sov. Phys. JETP 57, 1202 (1983);JETP Lett. 37, 130 (1983);ibid.,33, 155 (1981);Phys. Status Solidi (b),121, k87 (1984).Google Scholar
  17. 17.
    M. Z. Huang, Y. N. Xu, and W. Y. Ching,Phys. Rev. B 47, 8249 (1993).Google Scholar
  18. 18.
    G. L. Bir and G. E. Pikus,Theory of Symmetry and Deformation Effects in Semiconductors (Nauka, Moscow, 1972).Google Scholar
  19. 19.
    F. V. Kusmartsev, Thesis “Symmetry Breaking in Systems with Degenerate Spectrum and Related Phenomena,” Landau Institute, Moscow (1983).Google Scholar
  20. 20.
    A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,Methods of Quantum Field Theory in Statistical Physics (Prentice-Hall, Englewood Cliffs, New Jersey, 1963).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • F. V. Kusmartsev
    • 1
  1. 1.L. D. Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations