Zeitschrift für Physik B Condensed Matter

, Volume 89, Issue 1, pp 11–19 | Cite as

Intermittency in the Navier-Stokes dynamics

  • Siegfried Grossmann
  • Detlef Lohse
Original Contributions


Intermittency effects in high Reynolds number turbulence (Re≈103–106) are calculated from the Navier-Stokes equation in Fourier-Weierstrass approximation. First, the probability density functions (PDF) of scale resolved turbulent signals is found to be Gaussian for large scales, whereas for smaller scales the PDF changes (in agreement with experiment) to a more and more stretched exponential type. This is due to intermittent small scale fluctuations which are caused by the competition between turbulent energy transfer downscale and viscous energy loss. Second, we calculate the moments of ther-averaged energy dissipation rate εr (x) and theirr-scaling exponents μ(m/3). Our results well agree with experiment and numerical simulations of the full Navier-Stokes equations (μ(2)=0.29±0.02). We analytically show that the common identification between the μ(m/3) and the corrections δζ(m) to classical scaling of the velocity structure functions (Kolmogorov's refined similarity hypothesis) is doubtful, because even Gaussian ∂1u1-PDFs (characterizing non intermittent flow) lead to μ(m/3)≠0.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Batchelor, G.K., Townsend, A.A.: Proc. R. Soc. London Ser. A199, 238 (1949)Google Scholar
  2. 2.
    Anselmet, F., Gagne, Y., Hopfinger, E.J., Antonia, R.A.: J. Fluid Mech.140, 63 (1984)Google Scholar
  3. 3.
    Castaing, B., Gagne, Y., Hopfinger, E.J.: Physica D46, 177 (1990)Google Scholar
  4. 4.
    Meneveau, Ch., Sreenivasan, K.R.: J. Fluid Mech.244, 429 (1991)Google Scholar
  5. 5.
    Meneveau, Ch., Sreenivasan, K.R.: Nucl. Phys. B [Proc. Suppl.]2, 49 (1987)Google Scholar
  6. 6.
    Meneveau, Ch.: J. Fluid Mech.232, 469 (1991)Google Scholar
  7. 7.
    Vincent, A., Meneguzzi, M.: J. Fluid Mech.225, 1 (1991)Google Scholar
  8. 8.
    Kerr, R.: J. Fluid Mech.153, 31 (1985)Google Scholar
  9. 9.
    Kerr, R.: J. Fluid Mech.211, 309 (1990)Google Scholar
  10. 10.
    Siggia, E.D.: J. Fluid Mech.107, 375 (1981)Google Scholar
  11. 11.
    Hosokawa, I., Yamamoto, K.: Phys. Fluids A2, 889 (1990)Google Scholar
  12. 12.
    Hosokawa, I., Yamamoto, K.: In: Turbulence and coherent structures. Metais, O., Lesieur, M. (eds.), p. 177. Dordrecht: Kluwer Academic Publishers 1991Google Scholar
  13. 13.
    Kolmogorov, A.N.: J. Fluid Mech.13, 82 (1962)Google Scholar
  14. 14.
    Obukhov, A.M.: J. Fluid Mech.13, 77 (1962)Google Scholar
  15. 15.
    For a collection of papers concerning cascade processes see: Proc. R. Soc. London Ser. A434, 1 (1991)Google Scholar
  16. 16.
    Jensen, M.H., Paladin, G., Vulpiani, A.: Phys. Rev. A43, 798 (1991)Google Scholar
  17. 17.
    Jensen, M.H., Paladin, G., Vulpiani, A.: Phys. Rev. A45, 7214 (1992)Google Scholar
  18. 18.
    Yamada, M., Ohkitani, K.: J. Phys. Soc. Jpn.56, 4210 (1987)Google Scholar
  19. 19.
    Yamada, M., Ohkitani, K.: Prog. Theor. Phys.79, 1265 (1988)Google Scholar
  20. 20.
    Yamada, M., Ohkitani, K.: Phys. Rev. Lett.60, 983 (1988)Google Scholar
  21. 21.
    Eggers, J., Grossmann, S.: Phys. Fluids A3, 1958 (1991)Google Scholar
  22. 22.
    Grossmann, S., Lohse, D.: Phys. Rev. Lett.67, 445 (1991)Google Scholar
  23. 23.
    Grossmann, S., Lohse, D.: Phys. Rev. A (1992) (in press)Google Scholar
  24. 24.
    Rogers, M., Moin, P.: J. Fluid Mech.176, 33 (1986)Google Scholar
  25. 25.
    Rogallo, R.: NASA Tech. Memo.81, 315 (1982)Google Scholar
  26. 26.
    Taylor, G.I.: Proc. R. Soc. London Ser. A164. 476 (1938)Google Scholar
  27. 27.
    Hosokawa, I., Yamamoto, K.: J. Phys. Soc. Jpn.59, 401 (1990)Google Scholar
  28. 28.
    Siggia, E.D.: Phys. Rev. A15, 1730 (1977)Google Scholar
  29. 29.
    Kerr, R.M., Siggia, E.D.: J. Stat. Phys.19, 543 (1978)Google Scholar
  30. 30.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical recipes. Cambridge: Cambridge University Press 1988Google Scholar
  31. 31.
    Balachandar, S., Sirovich, L.: Phys. Fluids A3, 919 (1991)Google Scholar
  32. 32.
    Ching, E.S.C.: Phys. Rev. A44, 3622 (1991)Google Scholar
  33. 33.
    Kraichnan, R.: Phys. Fluids10, 2080 (1967)Google Scholar
  34. 34.
    Frisch, U., Morf, R.: Phys. Rev. A23, 2673 (1981)Google Scholar
  35. 35.
    Eggers, J., Grossmann, S.: Phys. Lett. A156, 444 (1991)Google Scholar
  36. 36.
    Kraichnan, R.: Phys. Rev. Lett.65, 575 (1990)Google Scholar
  37. 37.
    Atta, C.W. van, Antonia, R.A.: Phys. Fluids23, 252 (1980)Google Scholar
  38. 38.
    Yamamoto, K., Hosokawa, I.: J. Phys. Soc. Jpn.57, 1532 (1988)Google Scholar
  39. 39.
    Wu, X.Z., Kadanoff, L., Libchaber, A., Sano, M.: Phys. Rev. Lett.64, 2140 (1990)Google Scholar
  40. 40.
    Procaccia, I., Ching, E.S.C., Constantin, P., Kadanoff, L.P., Libchaber, A., Wu, X.Z.: Phys. Rev. A44, 8091 (1991)Google Scholar
  41. 41.
    Frisch, U.: Proc. R. Soc. London Ser. A434, 89 (1991)Google Scholar
  42. 42.
    Bacry, E., et al.: In: Turbulence and coherent structures. Metais, O., Lesieur, M. (eds.), p. 203. Dordrecht: Kluwer Academic Publishers 1991Google Scholar
  43. 43.
    Hosokawa, I., Yamamoto, K.: Phys. Fluids A4, 457 (1992)Google Scholar
  44. 44.
    Wyngaard, J.C., Tennekes, H.: Phys. Fluids13, 1962 (1970)Google Scholar
  45. 45.
    Parisi, G., Frisch, U.: In: Turbulence and predictability of geophysical fluid dynamics. Ghil, M., Benzi, R., Parisi, G. (eds.), p. 84. Amsterdam: North-Holland 1985Google Scholar
  46. 46.
    Benzi, R., Paladin, G., Parisi, G., Vulpiani, A.: J. Phys. A17, 3521 (1984)Google Scholar
  47. 47.
    Novikov, E.A.: Prikl. Mat. Mech.35, 266 (1971)Google Scholar
  48. 48.
    Mandelbrot, B.B.: The fractal geometry of nature. San Francisco: Freeman and Company 1982Google Scholar
  49. 49.
    Erzan, A., Grossmann, S., Hernandes-Machado, A.: J. Phys. A20, 3913 (1987)Google Scholar
  50. 50.
    Landau, L.D., Lifshitz, E.M.: Fluid mechanics. Oxford: Pergamon Press 1987Google Scholar
  51. 51.
    Effinger, H., Grossmann, S.: Z. Phys. B—Condensed Matter66, 289 (1987)Google Scholar
  52. 52.
    Grossmann, S., Lohse, D.: Intermittency exponents. (Preprint 1992)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Siegfried Grossmann
    • 1
  • Detlef Lohse
    • 1
  1. 1.Fachbereich PhysikPhilipps-UniversitätMarburgFederal Republic of Germany

Personalised recommendations