Protoplasma

, Volume 164, Issue 1–3, pp 54–69

High-speed video analysis of the flagellar beat and swimming patterns of algae: possible evolutionary trends in green algae

  • I. Inouye
  • T. Hori
Article

Summary

The flagellar beat and swimming patterns of flagellated cells of 22 green plants, including 17 green flagellates (volvocalean and prasinophyte algae), motile cells of three seaweeds,Bryopsis, Caulerpa, andUlva, sperms of a liverwort,Marchantia, and a fern,Athyrium, were examined using a high-speed video system. So-called breast-stroke is widely distributed in green plants, and occurs rarely in prasinophyte flagellates and ulvophycean algae; in these algal groups flagellar beat similar to that found in animal sperm is common, both during forward and backward swimming. Different types of swimming patterns were observed in prasinophytes. The results indicate evolutionary trends of flagellar beat and swimming patterns in green plants such as change from backward to forward swimming, from flagellar to ciliary beating and from uni-directional (parallel) to radial-directional (cruciate) beating. Such trends are shown in two prasinophyte groups, thePyramimonas-lineage andTetraselmis-lineage.

Keywords

Green algae Flagellar beat Video analysis Evolution Swimming patterns Prasinophyceae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belcher JH (1964) Further notes onScourfieldia caeca. Br Phycol Bull 2: 371–373Google Scholar
  2. — (1969) Further observations on the type species ofPyramimonas (P. tetrarhynchus Schmarda) (Prasinophyceae): an examination by light microscopy, together with notes on its taxonomy. Bot J Linn Soc 62: 241–253Google Scholar
  3. Boalch GT, Parke M (1971) The prasinophycean genera (Chlorophyta) possibly related to fossil genera, in particular the genusTasmanites. In: Farinacci A (ed) Proceedings of the 2nd Planktonic Conference, Rome 1970, pp 99–105Google Scholar
  4. Brokaw CJ, Luck DJL (1983) Bending patterns ofChlamydomonas reinhardtii flagella 1. Wild type bending patterns. Cell Motil 3: 31–150Google Scholar
  5. — —, Huang B (1982) Analysis of the movement ofChlamydomonas flagella: the function of the radial-spoke system is revealed by comparison of wild-type and mutant flagella. J Cell Biol 92: 722–732Google Scholar
  6. Greuel BT, Floyd GL (1985) Development of the flagellar apparatus and flagellar orientation in the colonial green algaGonium pectorale (Volvocales). J Phycol 21: 358–371Google Scholar
  7. Holwill MEJ, Sleigh MA (1967) Propulsion by hispid flagella. J Exp Biol 47: 267–276Google Scholar
  8. Hoops HJ (1984) Somatic cell flagellar apparatuses in two species ofVolvox (Chlorophyceae). J Phycol 20: 20–27Google Scholar
  9. —, Floyd GL (1983) Ultrastructure and development of the flagellar apparatus and flagellar motion in the colonial green algaAstrephomene gubernaculifera. J Cell Sci 63: 21–41Google Scholar
  10. Hori H, Satow Y, Inouye I, Chihara M (1990) Origins of organelles and algae evolution deduced from 5S ribosomal RNA sequence. In: Nardon P, Gianinazzi-Pearson V, Grenier AM, Margulis L, Smith DC (eds) Endocytobiology, IV. INRA Press, Paris, pp 557–559Google Scholar
  11. Hyams JS, Borisy GG (1978) Isolated flagellar apparatus ofChlamydomonas: characterization of forward swimming and alteration of waveform and reversal of motion by calcium ions in vitro. J Cell Sci 33: 235–253Google Scholar
  12. Inouye I, Pienaar RN (1984) Light and electron microscope observations onNephroselmis astigmatica sp. nov. (class Prasinophyceae). Nord J Bot 4: 409–423Google Scholar
  13. —, Hori T, Chihara M (1990) Absolute configuration analysis of the flagellar apparatus ofPterosperma cristatum (Prasinophyceae) and consideration of its phylogenetic position. J Phycol 26: 329–344Google Scholar
  14. Kamiya R, Hasegawa E (1987) Intrinsic difference in beat frequency between the two flagella ofChlamydomonas reinhardtii. Exp Cell Res 173: 299–304Google Scholar
  15. Manton I (1975) Observations on the microanatomy ofScourfieldia marina Throndsen andScourfieldia caeca (Korsch.) Belcher et Swale. Arch Protistenk 117: 358–368Google Scholar
  16. —, Rayns DG, Ettl H, Parke M (1965) Further observations on green flagellates with scaly flagella: the genusHeteromastix Korshikov. J Mar Biol Assoc UK 45: 241–255Google Scholar
  17. Melkonian M (1982 a) Structural and evolutionary aspects of the flagellar apparatus in green algae and land plants. Taxon 3: 255–265Google Scholar
  18. — (1982 b) Effect of divalent cations on flagellar scales in the green flagellateTetraselmis cordiformis. Protoplasma 111: 221–233Google Scholar
  19. — (1983) Functional and phylogenetic aspects of the basal apparatus in algal cells. J Submicrosc Cytol 15: 121–125Google Scholar
  20. — (1984) Flagellar apparatus ultrastructure in relation to green algal classification. In: Irvine DEG, John DM (eds) Systematics of the green algae. Academic Press, ondon, pp 73–120Google Scholar
  21. — (1990 a) Phylum Chlorophyta class Prasinophyceae. In: Margulis L, Chapman DJ, Corliss J, Melkonian M (eds) Handbook of Protoctista. Jones and Bartlett, Boston, pp 600–607Google Scholar
  22. — (1990 b) Chlorophyte orders of uncertain affinities. Order Pedinomonadales. In: Margulis L, Chapman DJ, Corliss J, Melkonian M (eds) Handbook of Protoctista. Jones and Bartlett, Boston, pp 649–651Google Scholar
  23. — Preisig HR (1982) Twist of central pair microtubules in the flagellum of the green flagellateScourfieldia caeca. Cell Biol Int Rep 6: 269–277Google Scholar
  24. — — (1986) A light and electron microscopic study ofScherffelia dubia, a new member of the scaly green flagellates (Prasinophyceae). Nord J Bot 6: 235–256Google Scholar
  25. — —, Robenek H (1984) The eyespot apparatus of flagellated green algae: a critical review. In: Round FE, Chapman DJ (eds) Progress in phycological research, vol 3. Biopress, Bristol, pp 193–268Google Scholar
  26. Moestrup Ø (1978) On the phylogenetic validity of the flagellar apparatus in green algae and other chlorophyll a and b containing plants. Bio-Systems 10: 117–144Google Scholar
  27. — (1983) Further studies ofNephroselmis and its allies (Prasinophyceae). I. The question of the genusBipedinomonas. Nord J Bot 3: 609–627Google Scholar
  28. —, Ettl H (1979) A light and electron microscopical study ofNephroselmis olivacea Stein (Prasinophyceae). Opera Bot 49: 2–39Google Scholar
  29. —, Hori T (1989) Ultrastructure of the flagellar apparatus inPyramimonas octopus (Prasinophyceae). 2. Flagellar roots, connecting fibers, and numbering of individual flagella in green algae. Protoplasma 148: 41–56Google Scholar
  30. —, Throndsen J (1988) Light and electron microscopical studies onPseudoscourfieldia marina, a primitive scaly green flagellate (Prasinophyceae) with posterior flagella. Can J Bot 66: 1415–1434Google Scholar
  31. — (1980) Prasinophytes. In: Cox ER (ed) Phytoflagellates. Elsevier/North Holland, New York, pp 85–145Google Scholar
  32. O'Kelly CJ, Floyd GL (1984) Flagellar apparatus absolute orientations and the phylogeny of the green algae. Bio-Systems 16: 227–251Google Scholar
  33. Omoto CK, Brokaw CJ (1985) Bending patterns ofChlamydomonas flagella 2. Calcium effects of reactivatedChlamydomonas flagella. Cell Motil 5: 53–60Google Scholar
  34. Parke M (1966) The genusPachysphaera (Prasinophyceae). In: Barnes H (ed) Some contemporary studies in marine science. Allen and Unwin, London, pp 555–563Google Scholar
  35. —, Adams I (1961) ThePyramimonas-like motile stage ofHalosphaera viridis Schmitz. Bull Res Counc Israel 10: 94–100Google Scholar
  36. Pringsheim EG (1946) Pure culture of algae. Cambridge University Press, LondonGoogle Scholar
  37. Ringo DL (1967) Flagellar motion and fine structure of the flagellar apparatus inChlamydomonas. J Cell Biol 33: 543–571Google Scholar
  38. Rüffer U, Nultsch W (1985) High-speed cinematographic analysis of the movement ofChlamydomonas reinhardtii. Cell Motil 5: 251–263Google Scholar
  39. — — (1987) Comparison of the beating of cis and trans-f1agella ofChlamydomonas cells held on micropipettes. Cell Motil Cytoskeleton 7: 87–93Google Scholar
  40. Schmidt JA, Eckert R (1976) Calcium couples flagellar reversal to photostimulation inChlamydomonas. Nature 262: 713–715Google Scholar
  41. Sleigh MA (1964) Flagellar movement of the sessile flagellatesActinomonas, Codonosiga, Monas andPoteriodendron. Q J Microsc Sci 105: 405–414Google Scholar
  42. Sleigh MA (1981) Flagellar beat patterns and their possible evolution. Bio-Systems 14: 423–431Google Scholar
  43. —, Barlow DI (1982) How are different ciliary beat patterns produced? Symp Soc Exp Biol 35: 139–157Google Scholar
  44. Stewart KD, Mattox KR (1978) Structural evolution in the flagellated cells of green algae and land plants. Bio-Systems 10: 145–152Google Scholar
  45. — —, Chandler CD (1974) Mitosis and cytokinesis inPlatymonas subcordiformis, a scaly green monad. J Phycol 10: 65–79Google Scholar
  46. Tappan H (1980) The paleobiology of plant protists. WH Freeman, San FranciscoGoogle Scholar
  47. Throndsen J (1969) Flagellates of Norwegian coastal waters. Nytt Mag Bot 16: 161–216Google Scholar
  48. Throndsen J (1988)Cymbomonas Schiller (Prasinophyceae) reinvestigated by light and electron microscopy. Arch Protistenk 136: 327–336Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • I. Inouye
    • 1
  • T. Hori
    • 1
  1. 1.Institute of Biological SciencesUniversity of TsukubaIbarakiJapan

Personalised recommendations