Marine Biology

, Volume 109, Issue 1, pp 141–147 | Cite as

Accumulation of mesozooplankton in a wake area as a causative mechanism of the “island-mass effect”

  • S. Hernández-León


Mesozooplankton biomass (as displacement volume and protein content) and electron-transport system (ETS) activity have been studied in the coastal waters around the Canary Islands. Increases in biomass and ETS activity, on a unit volume basis, were observed in the wakes of the islands. The biomass values obtained in the leeward area for Gran Canaria Island were up to ten times higher than those observed for typical oceanic waters around this archipelago. Sampling was performed in May 1986 at the end of the characteristic vertical mixing period in these waters. Relatively strong winds were recorded prior to sampling. Specific ETS activity was higher at the windward stations on the island shelf. This correlates with the observation in a recent study of increased primary production on the shelf area, where turbulence produced by the northerly trade winds has a marked effect. The persistence of this turbulence during a prolonged wind-pulse results in an accumulation of organisms in the wake of the islands due to current dynamics. This process is proposed as being an important causative mechanism of the island-mass effect. Different biomass values were recorded between circular and oblong islands. The latter are oriented towards the current and the northerly trade winds, and display significantly lower biomass values than the former.


Biomass Causative Mechanism Canary Island Shelf Area Displacement Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Alldredge, A. L., Hamner, W. M. (1980). Recurring aggregation of zooplankton by tidal current. Estuar. cstl mar. Sci. 10: 31–37Google Scholar
  2. Arístegui, J., Hernández-León, S., Gómez, M., Medina, L., Ojeda, A., Torres, S. (1989). Influence of the north trade winds on the biomass and production of neritic plankton around Gran Canaria island. Scientia mar. 53: 223–229Google Scholar
  3. Barkley, R. A. (1972). Johnston Atoll's wake. J. mar. Res. 30: 201–216Google Scholar
  4. Blackburn, M. (1965). Oceanography and the ecology of tunas. Oceanogr. mar. Biol. A. Rev. 3: 299–322Google Scholar
  5. Boden, B. P., Parker, L. D. (1986). The plankton of the Prince Edward Islands. Polar Biol. 5: 81–93Google Scholar
  6. Braun, J. G. (1980). Estudios de producción en aguas de las Islas Canarias. I. Hidrografia, nutrientes y producción primaria. Boln Inst. esp. Oceanogr. 5 (285): 149–154Google Scholar
  7. Braun, J. G. (1981). Estudios de producción en aguas de las Islas Canarias. II Producción del zooplancton. Boln Inst. esp. Oceanogr. 290: 89–96Google Scholar
  8. Conover, R. J. (1959). Regional and seasonal variation in the respiratory rate of marine copepods. Limnol. Oceanogr. 4: 259–268Google Scholar
  9. De León, A. R., Braun, J. G. (1973). Ciclo anual de la producción primaria y su relación con los nutrientes en aguas Canarias. Boln Inst. esp. Oceanogr. 167: 1–24Google Scholar
  10. Doty, M. S., Oguri, M. (1956). The island mass effect. J. Cons. perm. int. Explor. Mer 22: 33–37Google Scholar
  11. Feldman, G., Clark, D., Halpern, D. (1984). Satellite color observations of the phytoplankton distribution in the Eastern Equatorial Pacific during the 1982–1983 El Niño. Science, N.Y. 226: 1069–1071Google Scholar
  12. Fernández De Puelles, M. L. (1986). Ciclo anual de la comunidad de meso y microzooplancton; su biomasa, estructura, relaciones tróficas y producción en aguas de las Islas Canarias. Tesis. Universidad de MadridGoogle Scholar
  13. Gilmartin, M., Revelante, N. (1974). The “island mass” effect on the phytoplankton and primary production of the Hawaiian Islands. J. exp. mar. Biol. Ecol. 16: 181–204Google Scholar
  14. Hargraves, P. E., Brody, R. W., Burkholder, P. R. (1970). A study of phytoplankton in the Lesser Antilles region. Bull. mar. Sci. 20: 331–349Google Scholar
  15. Hernández-León, S. (1986). “Efecto de masa de isla” en aguas del Archipiélago Canario según estudios de biomasa y actividad del sistema de transporte de electrones en el mesozooplancton. Tesis. Universidad La LagunaGoogle Scholar
  16. Hernández-León, S. (1987). Actividad del sistema de transporte de electrones en el mesozooplancton durante un máximo primaveral en aguas del Archipiélago Canario. Investigación pesq. 51: 491–499Google Scholar
  17. Hernández-León, S. (1988a). Ciclo anual de la biomasa del mesozooplancton sobre un área de plataforma en aguas del Archipiélago Canario. Investigación pesq. 52: 3–16Google Scholar
  18. Hernández-León, S. (1988b). Gradients of mesozooplankton biomass and ETS activity in the wind shear area as evidence of an island mass effect in the Canary Island waters. J. Plankton Res 10: 1141–1154Google Scholar
  19. Hernández-León, S., Llinás, O., Braun, J. G (1984). Nota sobre la variación de la biomasa del mesozooplancton en aguas de Canarias. Investigación pesq. 48: 495–508Google Scholar
  20. Hernández-León, S., Miranda-Rodal, D. (1987). Actividad del sistema de transporte de electrones y biomasa del mesozooplancton en aguas de las Islas Canarias. Boln Inst. esp. Oceanogr. 4 (2): 49–62Google Scholar
  21. Houvenaghel, G. T. (1978). Oceanographic conditions in the Galapagos Archipelago and their relationships with life on the islands. In: Boje, R., Tomczak, M. (eds.) Upwelling ecosystems. Springer-Verlag, Berlin, Heidelberg, New York, p. 181–200Google Scholar
  22. Ikeda, T. (1970). Relationship between respiration rate and body size in marine plankton animals as a function of the temperature of habitat. Bull. Fac. Fish. Hokkaido Univ. 21: 91–112Google Scholar
  23. Jones, E. C. (1962). Evidence of an island effect upon the standing crop of zooplankton near the Marquesas Islands, Central Pacific. J. Cons. perm. int. Explor. Mer 27: 223–231Google Scholar
  24. Kenner, R. A., Ahmed, S. I. (1975). Measurements of electron transport activities in marine phytoplankton. Mar. Biol. 33: 119–127Google Scholar
  25. Le Borgne, R. P., Dandonneau, Y., Lemasson, L. (1985). The problem of the island mass effect on chlorophyll and zooplankton standing crops around Mare (Loyalty Islands) and New Caledonia. Bull. mar. Sci. 37: 450–459Google Scholar
  26. Lowry, P. H., Rosenbrough, N. J., Farr, A. L., Randall, R. J. (1951). Protein measurement with a Folin phenol reagent. J. biol. Chem. 193: 265–275Google Scholar
  27. Mascareño, D. (1972). Algunas consideraciones oceanográficas de las aguas del Archipiélago Canario. Boln Inst. esp. Oceanogr. 158: 1–79Google Scholar
  28. Mascareño, D., Molina, R. (1970). Contribution à l'étude de l'upwelling dans la zone Canarienne africaine. Rapp. P.-v. Réun. Commn. int. Explor. scient. Mer Méditerr. 159: 61–73Google Scholar
  29. Molina, R., Laatzen, F. L. (1986). Corrientes en la región comprendida entre las Islas Canarias orientales, Maruecos y las Islas Madeira. Campaña Norcanarias I. Revta Geofis. 42: 41–52Google Scholar
  30. Moore, H. B. (1949). The zooplankton of the upper waters of the Bermuda area of the North Atlantic. Bull. Bingham oceanogr. Coll. 12: 1–97Google Scholar
  31. Moore, E., Sander, F. (1979). A comparative study of zooplankton from oceanic, shelf and harbour waters of Jamaica. Biotropica 11: 196–206Google Scholar
  32. Nival, P., Nival, S., Palazzoli, I (1972). Données sur la respiration de différents organismes communs dans le plancton de Villefranche-sur-Mer. Mar. Biol. 17: 63–76Google Scholar
  33. Owens, T. G., King, F. D. (1975). The measurement of respiratory electron-transport-system activity in marine zooplankton. Mar. Biol. 30: 27–36Google Scholar
  34. Packard, T. T. (1969). The estimation of the oxygen utilization rate in seawater from the activity of the respiratory electron transport system in plankton. Ph. D. thesis. University of Washington, SeattleGoogle Scholar
  35. Packard, T. T., Devol, A. H., King, F. D. (1975). The effect of temperature on the respiratory electron transport system in marine plankton. Deep-Sea Res. 22: 237–249Google Scholar
  36. Pérez-Martell, E. (1988). Interacción vientos-corrientes en profundidades reducidas. Un modelo para la costa este de Gran Canaria. Tesis, Universidad Politécnica de CanariasGoogle Scholar
  37. Sander, F. (1973). Internal waves as causative mechanisms of island mass effects. Caribb. J. Sci. 13: 179–182Google Scholar
  38. Sander, F. (1981). A preliminary assessment of the main causative mechanisms of the “island mass” effect of Barbados. Mar. Biol. 64: 199–205Google Scholar
  39. Scholander, P. F., Flagg, W., Walters, V., Irving, L. (1953). Climatic adaptation in arctic and tropical poikilotherms. Physiol. Zoöl. 26: 67–92Google Scholar
  40. Simpson, J. H., Tett, P. B., Argote-Espinoza, M. L., Edwards, A., Jones, K. J., Savidge, G. (1982). Mixing and phytoplankton growth around an island in a stratified area. Contin. Shelf Res. 1: 15–31Google Scholar
  41. Sund, P. N., Blackburn, M., Williams, F. (1981). Tunas and their environment in the Pacific Ocean: a review. Oceanogr. mar. Biol. A. Rev. 19: 443–512Google Scholar
  42. UNESCO (1968). Zooplankton sampling. Monogr. oceanogr. Methodol. (UNESCO) 2: 1–174Google Scholar
  43. Van Camp, L., Nykjaer, L. (1988). Remote sensing of the Northwest African upwelling area. Commission of the European Communities. Joint Research Centre, Ispra, Italy (Internal tech. Rep.)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • S. Hernández-León
    • 1
  1. 1.Facultad de Ciencias del MarLas Palmas de Gran CanariaCanary Islands

Personalised recommendations