Zeitschrift für Physik B Condensed Matter

, Volume 31, Issue 1, pp 105–110 | Cite as

Nakajima-Zwanzig's generalized master equation: Evaluation of the kernel of the integro-differential equation

  • R. Kühne
  • P. Reineker


A method is presented, which allows the exact elimination of the projection operator from the kernel of the Nakajima-Zwanzig generalized master equation without using perturbational expansions. Expressions for kernels of generalized master equations using several frequently occuring types of projection operators are derived explicitly. The application of this method for the exact derivation of generalized master equations describing the coherent and the coupled coherent and incoherent exciton motion is proposed. As another application, the derivation of the Smoluchowski equation is suggested.


Spectroscopy Neural Network State Physics Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haken, H.: Laser Theory, in: Encyclopedia of Physics XXV/2c, ed. Flügge, S. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  2. 2.
    Agarwal, G.S.: Master Equation Methods in Quantum Optics, in: Progress in Optics XI, ed. Wolf, E. Amsterdam-London: North-Holland Publishing Company 1973Google Scholar
  3. 3.
    Haake, F.: Statistical Treatment of Open Systems by Generalized Master Equations, in: Springer Tracts in Modern Physics, Volume 66. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  4. 4.
    Haken, H.: Rev. Mod. Physics47, 67 (1975)Google Scholar
  5. 5.
    Pauli, W.: Festschrift zum 60. Geburtstage A. Sommerfelds, S. 30. Leipzig: Hirzel 1928Google Scholar
  6. 6.
    Van Hove, L.: Physica21, 517 (1955)Google Scholar
  7. 7.
    Van Hove, L.: Physica23, 441 (1957)Google Scholar
  8. 8.
    Prigogine, I., Resibois, P.: Physica27, 629 (1961)Google Scholar
  9. 9.
    Nakajima, S.: Progr. Theor. Phys.20, 948 (1958)Google Scholar
  10. 10.
    Zwanzig, R.: J. Chem. Phys.33, 1338 (1960)Google Scholar
  11. 11.
    Argyres, P.N., Kelley, P.L.: Phys. Rev.134A, 98 (1964)Google Scholar
  12. 12.
    Kenkre, V,M., Knox, R.S.: Phys. Rev. B9, 5279 (1974)Google Scholar
  13. 13.
    Haake, F.: Z. Physik227, 179 (1969)Google Scholar
  14. 14.
    Haken, H., Strobl, G. in: The Triplet State, Ed. Zahlan, A.B., Cambridge: Cambridge University Press, 1967Google Scholar
  15. 15.
    Haken, H., Reineker, P.: Z. Physik249, 253 (1972)Google Scholar
  16. 16.
    Haken, H., Strobl, G.: Z. Physik262, 135 (1973)Google Scholar
  17. 17.
    Reineker, P.: Phys. Rev. B, to be published May, 15, 1978Google Scholar
  18. 18.
    Kühne, R., Reineker, P., phys. stat. sol. (b), to be publishedGoogle Scholar
  19. 19.
    Bonch-Bruevich, V.L., Tyablikov, S.V.: The Green Function Method in Statistical Mechanics, Amsterdam: North-Holland Publishing Company, 1962Google Scholar
  20. 20.
    Fetter, A.L., Walecka, J.D.: Quantum Theory of Many-Particle Systems, New York: Mc Graw-Hill Book Company 1971Google Scholar
  21. 21.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, New York: Dover Publications, INC. 1970Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • R. Kühne
    • 1
  • P. Reineker
    • 1
  1. 1.Abteilung Theoretische Physik IUniversität UlmUlmFederal Republic of Germany

Personalised recommendations