Zeitschrift für Physik B Condensed Matter

, Volume 30, Issue 3, pp 345–353 | Cite as

On the structure of exact solutions of discrete masterequations

  • W. Weidlich


A concise version of the proof for the graph theoretical representation of the exact solution of the stationary discrete masterequation is given. Further, a new algorithm is developed for the solution of stationary and nonstationary discrete masterequations with next neighbour transition probabilities in the general case without detailed balance. This algorithm reduces the dimension of the system of masterequations to the number of boundary sites and is also appropriate for computer evaluation.


Spectroscopy Neural Network State Physics Exact Solution Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haken, H.: Synergetics—An Introduction, Berlin-Heidelberg-New York: Springer 1977Google Scholar
  2. 2.
    Agarwal, G.S.: Phys. Rev.178, 2025 (1969)Google Scholar
  3. 3.
    Haken, H.: Encyclopedia of Physics, Vol. XXV/2c, Berlin-Heidelberg-New York: Springer 1970Google Scholar
  4. 4.
    Görtz, R.: J. Phys. A9, 1089 (1976)Google Scholar
  5. 5.
    Görtz, R., Walls, D.F.: Z. Physik B25, 423 (1976)Google Scholar
  6. 6.
    Dohm, V.: Phys. Rev. A14, 393 (1976)Google Scholar
  7. 7.
    Haag, G.: Z. Physik B29, 153 (1978)Google Scholar
  8. 8.
    Alber, P., Haag, G., Weidlich, W.: Z. Physik B26, 207 (1977)Google Scholar
  9. 9.
    Graham, R., Haken, H.: Z. Physik248, 289 (1971)Google Scholar
  10. 10.
    Risken, H.: Z. Physik251, 231 (1972)Google Scholar
  11. 11.
    Landauer, R.: J. Appl. Phys.33, 2209 (1962)Google Scholar
  12. 12.
    Haken, H.: Phys. Lett.46 A, 443 (1974)Google Scholar
  13. 13.
    Kirchhoff, G., Poggendorffs: Ann. Phys.72, 495 (1844)Google Scholar
  14. 14.
    Hill, T.L.: J. Theoret. Biol.10, 442 (1966)Google Scholar
  15. 15.
    Schnakenberg, J.: Rev. Mod. Phys.48, 571 (1976)Google Scholar
  16. 16.
    Gardiner, C.W., McNeil, K.J., Walls, D.F., Matheson, J.: J. Stat. Phys.14, 307 (1976); and J. Stat. Phys.12, 21 (1975)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • W. Weidlich
    • 1
  1. 1.Institut für Theoretische PhysikUniversität StuttgartStuttgart 80Federal Republic of Germany

Personalised recommendations