Monatshefte für Mathematik

, Volume 80, Issue 3, pp 171–177 | Cite as

On the Fourier transformation on spaces of (p,q)-multipliers

  • Bernd Dreseler
  • Walter Schempp


LetG denote a locally compact abelian topological group. The aim of the present paper is to prove an “intermediate” result between two well-known results ofL. Hörmander andG. I. Gaudry concerning the structure of the spaces ℱGℳμℓt p,q (G).


Fourier Fourier Transformation Topological Group Abelian Topological Group Compact Abelian Topological Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Donoghue, Jr., W. F.: Distributions and Fourier Transforms. New York and London: Academic Press. 1969.Google Scholar
  2. [2]
    Edwards, R. E., andJ. F. Price: A naively constructive approach to boundedness principles, with applications to harmonic analysis. Enseignement Math.16, 255–296 (1970).Google Scholar
  3. [3]
    Gaudry, G. I.: Quasimeasures and operators commuting with convolution. Pacific J. Math.18, 461–476 (1966).Google Scholar
  4. [4]
    Gaudry, G. I.: Multipliers of type (p,q). Pacific J. Math.18, 477–488 (1966).Google Scholar
  5. [5]
    Gaudry, G. I.: Bad behavior and inclusion results for multipliers of type (p,q). Pacific J. Math.35, 83–94 (1970).Google Scholar
  6. [6]
    Hörmander, L.: Estimates for translation invariant operators inL pspaces. Acta Math.104, 93–140 (1960).Google Scholar
  7. [7]
    Larsen, R.: An Introduction to the Theory of Multipliers. Berlin-Heidelberg-New York: Springer. 1971.Google Scholar
  8. [8]
    Salem, R.: On singular monotonic functions whose spectrum has a given Hausdorff dimension. Ark. Mat.1, 353–365 (1950). Also in “Oeuvres mathématiques”, B. 34, pp. 481–493. Paris: Hermann. 1967.Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Bernd Dreseler
    • 1
  • Walter Schempp
    • 1
  1. 1.Lehrstuhl für Mathematik I der Universität SiegenSiegen 21Federal Republic of Germany

Personalised recommendations