Marine Biology

, Volume 111, Issue 2, pp 191–197 | Cite as

Some properties of calcium-activated adenosine triphosphatase from the hermatypic coralGalaxea fascicularis

  • Y. K. Ip
  • A. L. L. Lim
  • R. W. L. Lim


Samples of the hermatypic coralGalaxea fascicularis were collected between April 1987 and April 1990 from coral reefs off Singapore (103 °45′E; 1 °13′N). Ca2+-activated adenosine triphosphatase (ATPase) activity was detected in the plasma-membrane-enriched heavy microsomal fraction ofG. fascicularis. The high affinity component hadKm andVmax values of 0.0021 mM and 0.050 µmol Pi mg−1 protein min−1, respectively; corresponding values for the low affinity component were 0.15 mM and 0.85 µmol mg−1 protein min−1. The activity of the high affinity component was inhibited 80 and 50%, respectively, by the anticalmodulin drugs calmidazolium and chlorpromazine. The low affinity component of the Ca2+-ATPase may represent activities of alkaline phosphatase, Ca2+-ATPase from membranes of mitochondria and endoplasmic reticulum, or calmodulin-dissociated plasma membrane Ca2+-ATPase resulting from the removal of Ca2+ by EDTA during the isolation process. The high affinity Ca2+-ATPase is probably the enzyme responsible for Ca2+ extrusion from the cells ofG. fascicularis. The high and low affinity components of this Ca2+-ATPase could use ATP and ADP as substrates. Maximum activities of both components were registered at pH 7 and at 45°C. Ruthenium red, a specific inhibitor of Ca2+-ATPase, inhibited the activities of the high and low affinity Ca2+-ATPase by 100 and 60%, respectively. Inhibition of the activities of both components was also observed with sulphydryl reagents (PCMB and mersalyl). However, DCMU, diamox, dinitrophenol, iodoacetate, fluoride, cyanide, ouabain, oligomycin B and L-phenylalanine had no effect on the enzyme activities.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Bergmeyer, H. U., Gawehn, K., Grassl, M. (1974). Enzymes as biochemical reagents. In: Bergmeyer, H. U. (ed.) Methods of enzymatic analysis. 1. Verlag Chemie GmbH, Weinheim, p. 425–522Google Scholar
  2. Carafoli, E. (1985). Biochemistry of plasma membrane calcium transporting systems. In: Martonosi, A. N. (ed.) The enzymes of biological membranes. Plenum Press, New York, p. 235–248Google Scholar
  3. Chalker, B. E. (1976). Calcium transport during skeletogenesis in hermatypic corals. Comp. Biochem. Physiol. 54A: 455–459Google Scholar
  4. Chalker, B. E. (1981). Skeletogenesis in scleractinian corals: the transport and deposition of strontium and calcium. In: Skoryna, S. C. (ed.) Handbook of stable strontium. Plenum Press, New York, p. 47–63Google Scholar
  5. Chalker, B. E., Taylor, D. L. (1975). Light-enhanced calcification, and the role of oxidative phosphorylation in calcification of the coralAcropora cervicornis. Proc. R. Soc. B 190: 323–331Google Scholar
  6. Chapman, G. (1974). The skeletal system. In: Muscatine, L., Lenhoff, H. M. (ed.) Coelenterate biology: reviews and new perspectives. Academic Press, New York, p. 93–128Google Scholar
  7. Dunham, E. T., Glynn, I. M. (1961). Adenosinetriphosphatase activity and the active movements of alkali metal ions. J. Physiol., Lond. 156: 274–293Google Scholar
  8. Ghijsen, W. E. J. M., DeJong, M. D., Van Os, C. H. (1980). Dissociation between Ca2+-ATPase and alkaline phosphatase activities in plasma membranes of rat duodenum. Biochim. biophys. Acta 599: 538–551Google Scholar
  9. Gietzen, K., Bader, H. (1985). Effect of calmodulin antagonists on Ca2+-transport ATPase. In: Hidaka, H., Hartshorne, D. J. (ed.) Calmodulin antagonists and cellular physiology. Academic Press, New York, p. 347–362Google Scholar
  10. Gietzen, K., Wuthrich, A., Bader, H. (1981). R24571: a new powerful inhibitor of red blood cell Ca2+-ATPase and of calmodulin-regulated functions. Biochem. biophys. Res. Commun. 101: 418–425Google Scholar
  11. Goreau, T. F. (1956). Histochemistry of mucopolysaccharide-like substances and alkaline phosphatase in Madreporaria. Nature, Lond. 177: 1029–1030Google Scholar
  12. Goreau, T. F., Bowen, V. (1955). Calcium uptake by a coral. Science, N. Y. 122: 1188–1189Google Scholar
  13. Hasselbach, W., Seraydarian, K. (1966). The role of sulfhydryl groups in calcium transport through the sarcoplasmic membranes of skeletal muscle. Biochem. Z. 345: 159–172Google Scholar
  14. Hayes, R. L., Goreau, N. I. (1977). Cytodynamics of coral calcification. Proc. 3rd int. Symp. coral Reefs 1: [Taylor, D. L. (ed.) School of Marine and Atmospheric Sciences, University of Miami], p. 439–445Google Scholar
  15. Isa, Y., Ikehara, N., Yamazato, K. (1980). Evidence for the occurrence of Ca2+-dependent adenosine triphosphatase in a hermatypic coral,Acropora hebes (DANA). Tech. Rep. Sesoko Mar. Sci. Lab. Univ. Ryakyus, Ryukyu Isl. 7: 19–25Google Scholar
  16. Itano, T., Penniston, J. T. (1985). Ca2+-pumping ATPase of plasma membranes. In: Hidaka, H., Hartshorne, D. J. (ed.) Calmodulin antagonists and cellular physiology. Academic Press, New York, p. 335–345Google Scholar
  17. Jeffrey, S. W., Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls ‘a’, ‘b’, ‘c1’ and ‘c2’ in higher plants, algae, and natural phytoplankton. Biochem. Physiol. Pfl. 167: 191–194Google Scholar
  18. Jokiel, P. L., Coles, S. L. (1977). Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar. Biol. 43: 201–208Google Scholar
  19. Krishnaveni, P., Chow, L. M., Ip, Y. K. (1989). Deposition of calcium (45Ca2+) in the coralGalexea fascicularis. Comp. Biochem. Physiol 94A: 509–513Google Scholar
  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. biol. Chem. 193: 265–275Google Scholar
  21. Martin, J. B., Doty, D. M. (1949). Determination of inorganic phosphate-modification of isobutyl alcohol procedure. Analyt. Chem. 21: 965–967Google Scholar
  22. Morre, D. J. (1971). Isolation of golgi apparatus. In: Colowick, S. P., Kaplan, N. O. (ed.) Methods in enzymology. XXII. Academic Press, New York, p. 130–148Google Scholar
  23. Muscatine, J. D. (1971). Endosymbiosis of algae and coelenterates. In: Lenhoff, H. M., Muscatine, L., Davis, L. V. (ed.) Experimental coelenterate biology. University of Hawaii Press, Hawaii, p. 179–191Google Scholar
  24. Penefsky, H. S., Bruist, M. F. (1984). Adenosinetriphosphatases. In: Bergmeyer, H. U. (ed.) Methods of enzymatic analysis. Verlag Chemie, Weinheim, p. 324–335Google Scholar
  25. Pfleger, H., Wolf, H. U. (1975). Activation of membrane-bound high-affinity calcium ion-sensitive adenosine triphosphatase of human erythrocytes by bivalent metal ions. Biochem. J. 147: 359–361Google Scholar
  26. Reed, K. C., Bygrave, F. L. (1974). The inhibition of mitochondrial calcium transport by lanthanides and ruthenium red. Biochem. J. 140: 143–155Google Scholar
  27. Ronquist, G. (1975). Structurally bound adenosinetriphosphate phosphohydrolase of the animal cell. In: Christensen, H. N. (ed.) Biological transport. W. A. Benjamin Inc., Massachusetts, p. 272–297Google Scholar
  28. Rorive, G., Kleinzeller, A. (1974). Ca2+-activated ATPase from renal tubular cells. In: Fleischer, S., Packer, L. (ed.) Methods in enzymology. XXXII. Academic Press, New York, p. 303–306Google Scholar
  29. Sarkadi, B., Szasz, I., Gardos, G. (1980). Characteristics and regulation of active calcium transport in inside-out red cell membrane vesicles. Biochim. biophys. Acta 598: 326–338Google Scholar
  30. Scharff, O., Foder, B. (1978). Reversible shift between two states of Ca2+-ATPase in human erythrocytes mediated by Ca2+ and a membrane bound activator. Biochim. biophys. Acta 509: 67–77Google Scholar
  31. Schatzmann, H. J. (1973). Dependence on calcium concentration and stoichiometry of the calcium pump in human red cells. J. Physiol., Lond. 253: 551–569Google Scholar
  32. Schatzmann, H. J., Vincenzi, F. F. (1969). Calcium movements across the membrane of human red cells. J. Physiol., Lond. 201: 369–395Google Scholar
  33. Shinn, E. A. (1966). Coral growth-rate, an environmental indicator. J. Paleont. 40: 233–240Google Scholar
  34. Vale, M. G. P., Moreno, A. J. M., Carvalho, A. P. (1984). Effects of calmodulin antagonists on the active Ca2+ uptake by rat liver mitochondria. Biochem. J. 214: 929–935Google Scholar
  35. Vandermeulen, J. H., Davis, N. D., Muscatine, L. (1972). The effects of inhibitors of photosynthesis on zooxanthellae in corals and other marine invertebrates. Mar. Biol. 16: 185–191Google Scholar
  36. Vandermeulen, J. H., Muscatine, L. (1974). Influence of symbiotic algae on calcification in reef corals: critique and progress report. In: Verberg, W. B. (ed.) Symbiosis in the sea. University of South Carolina Press, South Carolina, p. 1–20Google Scholar
  37. Vincenzi, F. F., Hinds, T. R. (1976). Plasma membrane calcium transport and membrane-bound enzymes. In: Cheung, W. Y. (ed.) Calcium and cell function, Vol. 1. Academic Press, London, p. 127–165Google Scholar
  38. Vinet, B., Zizian, L., Gauthier, B. (1978). Characteristics of the inhibition of serum alkaline phosphatase by theophylline. Clin. Biochem. 11(2): 57–61Google Scholar
  39. Watson, E. L., Vincenzi, F. F., Davis, P. W. (1971). Ca2+-activated membrane ATPase: selective inhibition by ruthenium red. Biochim. biophys. Acta 249: 606–610Google Scholar
  40. Wharton, D. C., Tzagoloff, A. (1967). Cytochrome oxidase from beef heart mitochondria. In: Colowick, S. P., Kaplan, N. O. (ed.) Methods in enzymology. X. Academic Press, New York, p. 245–250Google Scholar
  41. Wuytack, F., Raeymaekers, L., Verbist, J., Casteels, R. (1987) Ca2+-transport ATPases in the plasma membrane and endoplasmic reticulum. In: Anghileri, L. J. (ed.) The role of calcium in biological systems. IV. CRC Press Inc., Boca Raton, p. 115–162Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Y. K. Ip
    • 1
  • A. L. L. Lim
    • 1
  • R. W. L. Lim
    • 1
  1. 1.Department of ZoologyNational University of SingaporeKent RidgeSingapore

Personalised recommendations