Marine Biology

, Volume 111, Issue 3, pp 323–333

Allozymes and morphometric characters of three species ofMytilus in the Northern and Southern Hemispheres

  • J. H. McDonald
  • R. Seed
  • R. K. Koehn
Article

Abstract

Many authors have considered the common mussels in temperate waters of the Northern and Southern Hemispheres to be a single cosmopolitan species,Mytilus edulis Linnaeus, 1758. Others have divided these mussels into several subspecies or species. Samples of mussels were collected from 36 locations in the Northern Hemisphere and nine locations in the Southern Hemisphere. Electrophoretic evidence from eight loci indicates that the Northern Hemisphere samples consist of three electrophoretically distinguishable species:M. edulis from eastern North America and western Europe;M. galloprovincialis Lamarck, 1819 from the Mediterranean Sea, western Europe, California, and eastern Asia; andM. trossulus Gould, 1850 from the Baltic Sea, eastern Canada, western North America and the Pacific coast of Siberia. Mussels from Chile, Argentina, the Falkland Islands and the Kerguelen Islands contain alleles characteristic of all three Northern Hemisphere species, but because they are most similar toM. edulis from the Northern Hemisphere, we suggest that they tentatively be included inM. edulis. These South American samples are morphologically intermediate between Northern HemisphereM. edulis andM. trossulus. Mussels from Australia and New Zealand are similar in allele frequency and morphometric characters toM. galloprovincialis from the Northern Hemisphere. FossilMytilus sp. are present in Australia, New Zealand and South America, which suggests that the Southern Hemisphere populations may be native, rather than introduced by humans. Morphometric characters were measured on samples which the allozyme data indicated contained a single species. Canonical variates analysis of the morphometric characters yields functions which distinguish among our samples of the species in the Northern Hemisphere.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Beaumont, A. R., Seed, R., Garcia-Martinez, P. (1989). Electrophoretic and morphometric criteria for the identification of the musselsMytilus edulis andM. galloprovincialis. In: Ryland, J. S., Tyler, P. A. (eds.) Reproduction, genetics and distributions of marine organisms. Olsen and Olsen, Fredensborg, Denmark, p. 251–258Google Scholar
  2. Blot, M., Thiriot-Quiévreux, C., Soyer, J. (1988). Genetic relationships among populations ofMytilus desolationis from Kerguelen,M. edulis from the North Atlantic andM. galloprovincialis from the Mediterranean. Mar. Ecol. Prog. Ser. 44: 239–247Google Scholar
  3. Bulnheim, H.-P., Gosling, E. (1988). Population genetic structure of mussels from the Baltic Sea. Helgoländer Meeresunters. 42: 113–129Google Scholar
  4. Colhoun, E. A., Turner, E., van de Geer, G. (1982). Late Pleistocene marine molluscan faunas from sites in Tasmania. Pap. Proc. R. Soc. Tasm. 116: 91–96Google Scholar
  5. Conrad, T. A. (1837). Description of new marine shells from upper California, collected by Thomas Nuttall, Esq. J. Acad. nat. Sci. Philad. 7: 227–268Google Scholar
  6. Crespo, C. A., Garcia-Caballero, T., Beiras, A., Espinosa, J. (1990). Evidence from sperm ultrastructure that the mussel of Galician estuaries isMytilus galloprovincialis Lamarck. J. mollusc. Stud. 56: 127–128Google Scholar
  7. Dillon, R. T. Jr., Manzi, J. J. (1989). Genetics and shell morphology in a hybrid zone between the hard clamsMercenaria mercenaria andM. campechiensis. Mar. Biol 100: 217–222Google Scholar
  8. Donner, J., Jungner, H. (1981). Radiocarbon dating of marine shells from southeastern Australia as a means of dating relative sea-level changes. Ann. Acad. Sci. Fenn. (Geol. Geogr.) 131: 1–44Google Scholar
  9. Drozdov, A. L., Reunov, A. A. (1986). The morphology of gametes of the blue musselMytilus edulis from the White and Japan seas and Avacha inlet [in Russian]. Biol. Morya, Vladivostok 1986 (4): 52–55Google Scholar
  10. Edwards, C. A., Skibinski, D. O. F. (1987). Genetic variation of mitochondrial DNA in mussel (Mytilus edulis andM. galloprovincialis) populations from south west England and south Wales. Mar. Biol. 94: 547–556Google Scholar
  11. Ferson, S., Rohlf, F. J., Koehn, R. K. (1985). Measuring shape variation of two-dimensional outlines. Syst. Zool. 34: 59–68Google Scholar
  12. Fisher, C., Skibinski, D. O. F. (1990). Sex-biased mitochondrial DNA heteroplasmy in the marine musselMytilus. Proc. R. Soc. (Ser. B) 242: 149–156Google Scholar
  13. Fleming, C. A. (1959). Notes on New Zealand Recent and Tertiary mussels (Mytilidae). Trans. R. Soc. N.Z. 87: 165–178Google Scholar
  14. Fleming, C. A., Suggate, R. P. (1964). The 550 ft. raised beach at Amuri Bluff. N.Z. J. Geol. Geophys. 7: 353–358Google Scholar
  15. Gardner, J. P. A., Skibinski, D. O. F. (1988). Historical and size-dependent genetic variation in hybrid mussel populations. Heredity, Lond. 61: 93–105Google Scholar
  16. Gardner, J. P. A., Skibinski, D. O. F. (1990). Genotype-dependent fecundity and temporal variation of spawning in hybrid mussel (Mytilus) populations. Mar. Biol 105: 153–162Google Scholar
  17. Gosling, E. M. (1984). The systematic status ofMytilus galloprovincialis in western Europe: a review. Malacologia 25: 551–568Google Scholar
  18. Gosling, E. M., Wilkins, N. P. (1981). Ecological genetics of the musselsMytilus edulis andM. galloprovincialis on Irish coasts. Mar. Ecol. Prog. Ser. 4: 221–227Google Scholar
  19. Gould, A. A. (1850). Shells from the United States Exploring Expedition. Proc. Boston Soc. nat. Hist. 3: 343–348Google Scholar
  20. Gould, A. A. (1861). Descriptions of shells collected by the North Pacific Exploring Expedition. Proc. Boston Soc. nat. Hist. 8: 14–40Google Scholar
  21. Grant, W. S., Cherry, M. I. (1985).Mytilus galloprovincialis Lmk. in southern Africa. J. exp. mar. Biol. Ecol. 90: 179–191Google Scholar
  22. Hodgson, A. N., Bernard, R. T. F. (1986). Observations on the ultrastructure of the spermatozoon of two mytilids from the south-west of England. J. mar. biol. Ass. U.K. 66: 385–390Google Scholar
  23. Hoeh, W. R., Blakley, K. H., Brown, W. M. (1991). Heteroplasmy suggests limited biparental inheritance ofMytilus mitochondrial DNA. Science, N. Y. 251: 1488–1490Google Scholar
  24. Hope, J. R., Lampert, R. J., Edmondson, E., Smith, M. J., van Tets, G. F. (1977). Late Pleistocene faunal remains from Seton rock shelter, Kangaroo Island, South Australia. J. Biogeogr. 4: 363–385Google Scholar
  25. Hupé, H. (1854). Moluscos. In: Gay, C. (ed). Historia fisica y politica de Chile. Zoologia, Vol. 8. C. Gay, Paris, p. 1–407Google Scholar
  26. Johannesson, K., Kautsky, N., Tedengren, M. (1990) Genotypic and phenotypic differences between Baltic and North Sea populations ofMytilus edulis evaluated through reciprocal transplantations. II. Genetic variation. Mar. Ecol. Prog. Ser. 59: 211–219Google Scholar
  27. Johnson, L. (1976). Informe sobre una prospeccion arquelologica en Magallanes. An. Inst. Patagonia 7: 87–94Google Scholar
  28. Kerrison, A. R., Binns, M. A. (1984). A midden excavation — Royal Tasmanian Botanical Gardens, Hobart. Pap. Proc. R. Soc. Tasm. 118: 53–63Google Scholar
  29. Kira, T. (1962). Shells of the western Pacific in color. Hoikusha Publishing Co., OsakaGoogle Scholar
  30. Koehn, R. K., Hall, J. G., Innes, D. J., Zera, A. J. (1984). Genetic differentiation ofMytilus edulis in eastern North America. Mar. Biol. 79: 117–126Google Scholar
  31. Kwast, K. E., Foltz, D. W., Stickle, W. B. (1990). Population genetics and systematics of theLeptasterias hexactis (Echinodermata: Asteroidea) species complex. Mar. Biol. 105: 477–489Google Scholar
  32. Lamarck, J. B. P. A. d. (1819). Histoire naturelle des animaux sans vertébres, Vol. 6. A.S.B. Verdiere Libraire, ParisGoogle Scholar
  33. Lamy, E. (1936). Révision des Mytilidae vivants du Muséum National d'Histoire Naturelle de Paris. J. Conch., Paris 80: 66–102, 107–198Google Scholar
  34. Lee, S. Y., Morton, B. (1985). The introduction of the Mediterranean musselMytilus galloprovincialis into Hong Kong. Malac. Rev. 18: 107–109Google Scholar
  35. Levinton, J. S., Koehn, R. K. (1976). Population genetics of mussels. In: Bayne, B. L. (ed.) Marine mussels: their ecology and physiology. Cambridge Univ. Press, London, p. 357–384Google Scholar
  36. Lewis, J. R., Seed, R. (1969). Morphological variations inMytilus from southwest England in relation to the occurrence ofM. galloprovincialis Lamarck. Cah. Biol. mar. 10: 231–253Google Scholar
  37. Linnaeus, C. (1758). Systema naturae per regna tria naturae. 10th edn. Vol. 1. Regnum animale. Laurentii Salvii, StockholmGoogle Scholar
  38. Lobel, P. B., Belkhode, S. P., Jackson, S. E., Longerich, H. P. (1990). Recent taxonomic discoveries concerning the musselMytilus: implications for biomonitoring. Archs envir. Contam. Toxic. 19: 508–512Google Scholar
  39. Lubet, P., Prunus, G., Masson, M., Bucaille, D. (1984). Recherches expérimentales sur l'hybridation deMytilus edulis L. etM. galloprovincialis Lmk. (Mollusques Lamellibranches). Bull. Soc. zool. Fr. 109: 87–98Google Scholar
  40. McDonald, J. H., Koehn, R. K. (1988). The musselsMytilus galloprovincialis andM. trossulus on the Pacific coast of North America. Mar. Biol. 99: 111–118Google Scholar
  41. McDonald, J. H., Koehn, R. K., Balakirev, E. S., Manchenko, G. P., Pudovkin, A. I., Sergiyevsky, S. O., Krutovsky, K. V. (1990). On species identity of the “common mussel” inhabiting Asiatic coasts of the Pacific Ocean [in Russian]. Biol. Morya, Vladivostok 1990 (1): 13–22Google Scholar
  42. McDonald, J. H., Siebenaller, J. F. (1989). Similar geographic variation at theLap locus in the musselsMytilus trossulus andM. edulis. Evolution, Lawrence, KS 43: 228–231Google Scholar
  43. Milyutina, I. A., Petrov, N. B. (1989). Divergence of unique DNA sequences in bivalve mollusks of subfamily Mytilinae (Bivalvia mytilidae) Mol. Biol., (Moscow) 23: 1373–1381 (in Russian)Google Scholar
  44. Orbigny, A. d. (1846). Mollusques lamellibranches. In: Orbigny, A. d. (ed.) Voyage dans l'Amérique Méridionale 5 (3). Bertrand and Levrault, Paris, p. 489–758Google Scholar
  45. Powell, A. W. B. (1958). New Zealand molluscan systematics with descriptions of new species, Part 3. Rec. Auckland Inst. Mus. 5: 87–91Google Scholar
  46. SAS Institute (1982). SAS users guide: statistics. SAS Institute, Cary, North CarolinaGoogle Scholar
  47. Scarlato, O. A., Starobogatov, Y. I. (1979). The systematic position and distribution of mussels. In: Scarlato, O. A. (ed.) Promyslovye dvustvorchatye mollyuski-midii i ikh rol' v ekosistemakh [Commercial bivalve molluscan mussels and their role in the ecosystem]. Zoological Institute of the Soviet Academy of Sciences, Leningrad, p. 106–111 (in Russian).Google Scholar
  48. Seed, R. (1968). Factors influencing shell shape in the musselMytilus edulis. J. mar. biol. Ass. U.K. 48: 561–584Google Scholar
  49. Seed, R. (1971). A physiological and biochemical approach to the taxonomy ofMytilus edulis L. andMytilus galloprovincialis Lmk. from south-west England. Cah. Biol. mar. 12: 291–322Google Scholar
  50. Seed, R. (1972). Morphological variations inMytilus from the French coasts in relation to the occurrence and distribution ofM. galloprovincialis Lamarck. Cah. Biol. mar. 13: 357–384Google Scholar
  51. Seed, R. (1974). Morphological variations inMytilus from the Irish coasts in relation to the occurrence and distribution ofM. galloprovincialis Lamarck. Cah. Biol. mar. 15: 1–25Google Scholar
  52. Seed, R. (1978). The systematics and evolution ofMytilus galloprovincialis Lmk. In: Battaglia, B., Beardmore, J. A. (eds.) Marine organisms: genetics, ecology and evolution. Plenum Press, New York, p. 447–468Google Scholar
  53. Skibinski, D. O. F. (1983). Natural selection in hybrid mussel populations. In: Oxford, G. S., Rollinson, D. (eds.) Protein polymorphism: adaptive and taxonomic significance. Academic Press, London, p. 283–298Google Scholar
  54. Skibinski, D. O. F. (1985). Mitochondrial DNA variation inMytilus edulis L. and the Padstow mussel. J. exp. mar. Biol. Ecol. 92: 251–258Google Scholar
  55. Skibinski, D. O. F., Beardmore, J. A., Cross, T. F. (1978). Genetic evidence for naturally occurring hybrids betweenMytilus edulis andMytilus galloprovincialis. Evolution, Lancaster, Pa. 32: 354–364Google Scholar
  56. Skibinski, D. O. F., Beardmore, J. A., Cross, T. F. (1983). Aspects of the population genetics ofMytilus (Mytilidae; Mollusca) in the British Isles. Biol. J. Linn. Soc. 19: 137–183Google Scholar
  57. Skibinski, D. O. F., Roderick, E. E. (1991). Evidence of selective mortality in favour of theMytilus galloprovincialis Lmk. phenotype in British mussel populations. Biol. J. Linn. Soc. 42: 351–366Google Scholar
  58. Soot-Ryen, T. (1955). A report on the family Mytilidae (Pelecypoda). Allan Hancock Pacif. Exped. 20: 1–175Google Scholar
  59. Sprechmann, P. (1978). The paleoecology and paleogeography of the Uruguayan coastal area during the Neogene and Quaternary. Zitteliana 4: 3–72Google Scholar
  60. Väinölä, R. (1990). Allozyme differentiation between Baltic and North SeaMytilus populations: a reassessment of evidence from transplantations. Mar. Ecol. Prog. Ser. 67: 305–308Google Scholar
  61. Varvio, S.-L., Koehn, R. K., Väinölä, R. (1988). Evolutionary genetics of theMytilus edulis complex in the North Atlantic region. Mar. Biol. 98: 51–60Google Scholar
  62. Verduin, A. (1979). Conchological evidence for the separate specific identity ofMytilus edulis L. andM. galloprovincialis Lmk. Basteria 43: 61–80Google Scholar
  63. Vermeij, G. J. (1989). Geographical restriction as a guide to the causes of extinction: the case of the cold northern oceans during the Neogene. Paleobiology 15: 335–356Google Scholar
  64. Wilkins, N. P., Fujino, K., Gosling, E. M. (1983). The Mediterranean musselMytilus galloprovincialis Lmk. in Japan. Biol. J. Linn. Soc. 20: 365–374Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • J. H. McDonald
    • 1
  • R. Seed
    • 2
  • R. K. Koehn
    • 1
  1. 1.Department of Ecology and EvolutionState University of New YorkStony BrookUSA
  2. 2.School of Ocean SciencesUniversity of Wales BangorMenai BridgeUK
  3. 3.Department of Ecology and EvolutionUniversity of ChicagoChicagoUSA

Personalised recommendations