Advertisement

Zeitschrift für Physik B Condensed Matter

, Volume 51, Issue 4, pp 279–285 | Cite as

Exact density of states for lowest Landau level in white noise potential superfield representation for interacting systems

  • Franz Wegner
Article

Abstract

The density of states of two-dimensional electrons in a strong perpendicular magnetic field and white-noise potential is calculated exactly under the provision that only the states of the free electrons in the lowest Landau level are taken into account. It is used that the integral over the coordinates in the plane perpendicular to the magnetic field in a Feynman graph yields the inverse of the number λ of Euler trails through the graph, whereas the weight by which a Feynman graph contributes in this disordered system is λ times that of the corresponding interacting system. Thus the factors λ cancel which allows the reduction of thed dimensional disordered problem to a (d-2) dimensional φ4 interaction problem. The inverse procedure and the equivalence of disordered harmonic systems with interacting systems of superfields is used to give a mapping of interacting systems withU(1) invariance ind dimensions to interacting systems with UPL(1,1) invariance in (d+2) dimensions. The partition function of the new systems is unity so that systems with quenched disorder can be treated by averaging exp(−H) without recourse to the replica trick.

Keywords

Magnetic Field Neural Network Partition Function White Noise Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ando, T., Matsumoto, Y., Uemura, Y.: J. Phys. Soc. Jpn.39, 279 (1975)Google Scholar
  2. 2.
    von Klitzing, K., Dorda, G., Pepper, M.: Phys. Rev. Lett.45, 494 (1980)Google Scholar
  3. 3.a)
    Ando, T.: Anderson localisation. In: Springer Series in Solid-State Sciences. Nagaoka, Y., Fukuyama, H. (eds.) Vol. 39, p. 176, Berlin, Heidelberg, New York: Springer 1982Google Scholar
  4. 3.b)
    Thouless, D.J., p. 191,Google Scholar
  5. 3.c)
    Imry, Y.:, p. 198,Google Scholar
  6. 3.d)
    Ono, Y.: p. 207,Google Scholar
  7. 4.
    Ando, T.: J. Phys. Soc. Jpn.37, 622 (1974)Google Scholar
  8. 5.
    Lloyd, P., J. Phys. C2, 1717 (1969)Google Scholar
  9. 6.
    Euler, L.: Comm. Acad. Sci. Petropolitanae8, 128 (1736); Opera OmniaI-7, 1 (1766)Google Scholar
  10. 7.
    Kasteleyn, P.W.: In: Graph theory and theoretical physics. Harary, F. (ed.), p. 44. New York, London: Academic Press 1967Google Scholar
  11. 8.
    Harary, F., Graph theory, p. 204. Reading: Addison-Wesley 1969Google Scholar
  12. 9.
    Harary, F., Palmer, E.M.: Graphical enumeration. p. 25. New York, London: Academic Press 1973Google Scholar
  13. 10.
    McKane, A.J.: Phys. Lett.76A, 22 (1980)Google Scholar
  14. 11.
    Efetov, K.B.: Zh. Eksp. Teor. Fiz.82, 872 (1982); Sov. Phys. JETP55, 514 (1982)Google Scholar
  15. 12.
    Ziegler, K.: Z. Phys. B-Condensed Matter48, 293 (1982)Google Scholar
  16. 13.
    Wegner, F.: Z. Phys. B-Condensed Matter49, 297 (1983)Google Scholar
  17. 14.
    Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge: Cambridge University Press 1934Google Scholar
  18. 15.
    Kac, M.: Ark. Fys. Semin. Trondheim11, 1 (1968)Google Scholar
  19. 16.
    Lin, T.F.: J. Math. Phys.11, 1584 (1970)Google Scholar
  20. 17.
    Edwards, S.F.: In: Proceedings of the Third International Conference on Amorphous Materials 1970. Douglas, R.W., Ellis, B. (eds.). New York: Wiley 1972Google Scholar
  21. 18.
    Imry, Y., Mas, S.K.: Phys. Rev. Lett.35, 1399 (1975)Google Scholar
  22. 19.
    Young, A.P.: J. Phys. C10, L257 (1977)Google Scholar
  23. 20.
    Parisi, G., Sourlas, N.: Phys. Rev. Lett.43, 744 (1979)Google Scholar
  24. 21.
    Smith, C.A.B., Tutte, W.T.: Am. Math. Monthly48, 233 (1941)Google Scholar
  25. 22.
    Rittenberg, V., Scheunert, M.: J. Math. Phys.19, 709 (1978)Google Scholar
  26. 23.
    van Aardenne-Ehrenfest, T., de Bruijn, N.G.: Simon Stevin Wis. Natuurkd. Tijdschr.28, 203 (1951)Google Scholar
  27. 24.
    Matsubara, T.: Prog. Theor. Phys.14, 351 (1955)Google Scholar
  28. 25.
    Abrikosov, A.A., Gorkev, L.P., Dzyaloshinski, I.E.: Zh. Eksp. Teor. Fiz.36, 900 (1959); Sov. Phys. JETP9, 636 (1959)Google Scholar
  29. 26.
    Fradkin, E.S.: Zh. Teor. Fiz.36, 1286 (1959); Sov. Phys. JETP9, 912 (1959)Google Scholar
  30. 27.
    Abrikosov, A.A., Gorkov, L.P., Dzyaloskinski, I.E.: Methods of quantum field theory in statistical physics. Englewood Cliffs: Prentice Hall 1964Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Franz Wegner
    • 1
  1. 1.Institut für Theoretische PhysikRuprecht-Karls-UniversitätHeidelbergFederal Republic of Germany

Personalised recommendations