Mathematische Zeitschrift

, Volume 180, Issue 3, pp 225–234

Positivity improving operators and hypercontractivity

  • Christer Borell
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beckner, W.: Inequalities in Fourier analysis. Ann. of Math. (2)102, 159–182 (1975)Google Scholar
  2. 2.
    Bonami, A.: Étude des coefficients de Fourier des fonctions deL p(G). Ann. Inst. Fourier (Grenoble)20; 2, 335–402 (1970)Google Scholar
  3. 3.
    Borell, C.: Convexity in Gauss space. In: Aspects statistiques et aspects physiques des processus gaussiens. (Saint-Flour 1980), 27–37. Paris: CNRS No. 307, 1981Google Scholar
  4. 4.
    Borell, C.: Gaussian Radon measures on locally convex spaces Math. Scand.38, 265–284 (1976)Google Scholar
  5. 5.
    Borell, C.: Polynomial chaos and integrability. (To appear)Google Scholar
  6. 6.
    Glimm, J.: Boson fields with nonlinear self-interaction in two dimensions. Comm. Math. Phys.8, 12–25 (1968)Google Scholar
  7. 7.
    Glimm, J., Jaffe, A.: The λ(φ4)2 quantum field theory without cutoffs, II. The field operators and the approximate vacuum. Ann. of Math. (2)91, 362–401 (1970)Google Scholar
  8. 8.
    Glimm, J., Jaffe, A.: Phase transitions for φ24 quantum fields. Comm. Math. Phys.45, 203–216 (1975)Google Scholar
  9. 9.
    Gross, L.: Logarithmic Sobolev inequalities. Amer. J. Math.,97, 1061–1083 (1975)Google Scholar
  10. 10.
    Gross, L.: Existence and uniqueness of physical ground states. J. Functional Analysis10, 52–109 (1972)Google Scholar
  11. 11.
    Guerra, F., Rosen, L., Simon, B.: Correlation inequalities and the mass gap inP(φ)2, III. Mass gap for a class of strongly coupled theories with nonzero external field. Comm. Math. Phys.41, 19–32 (1975)Google Scholar
  12. 12.
    Guerra, F., Rosen, L., Simon, B.: TheP(φ)2 Euclidean quantum field theory as classical statistical mechanics. Ann. of Math. (2)101, 111–259 (1975)Google Scholar
  13. 13.
    Hoegh-Krohn, R., Simon, B.: Hypercontractive semigroups and two dimensional self-coupled Bose fields. J. Functional Analysis9, 121–180 (1972).Google Scholar
  14. 14.
    Nelson, E.: The free Markoff field. J. Functional Analysis12, 211–227 (1973)Google Scholar
  15. 15.
    Segal, I.: Construction of non-linear local quantum processes I. Ann. of Math. (2)92, 462–481 (1970)Google Scholar
  16. 16.
    Simon, B.: TheP(φ)2 Euclidean (Quantum) Field Theory. Princeton Series in Physics. Princeton, New Jersey: Princeton University Press 1974Google Scholar
  17. 17.
    Simon, B.: A remark on Nelson's best hypercontractive estimates. Proc. Amer. Math. Soc.55, 376–378 (1976)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Christer Borell
    • 1
    • 2
  1. 1.Department MathematicsChalmers University of TechnologyGöteborgSweden
  2. 2.University of GöteborgGöteborgSweden

Personalised recommendations